Answer:
F = 4000 N
Explanation:
given,
mass of rocket (M)= 5000 Kg
10 Kg gas burns at speed (m)= 4000 m/s
time = 10 s
average force = ?
at the end the rocket is at rest
by conservation of momentum
M v + m v' = 0
5000 x v - 10 x 4000 = 0
5000 v = 40000
v = 8 m/s
speed of rocket = 8 m/s
now,
we know
change in momentum = F x Δ t
F = 4000 N
Hence, the average force applied to the rocket is equal to F = 4000 N
Answer:
After 4 s of passing through the intersection, the train travels with 57.6 m/s
Solution:
As per the question:
Suppose the distance to the south of the crossing watching the east bound train be x = 70 m
Also, the east bound travels as a function of time and can be given as:
y(t) = 60t
Now,
To calculate the speed, z(t) of the train as it passes through the intersection:
Since, the road cross at right angles, thus by Pythagoras theorem:
Now, differentiate the above eqn w.r.t 't':
For t = 4 s:
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below are the choices and the answer is <span>B.
</span>a.) Models can be changed by scientists who are more famous than previous scientists.
<span>b.) As technology advances, new experiments often expose problems in accepted theories. </span>
<span>c.) Scientists tend to value new theories because they are more exciting. </span>
<span>d.) A newer theory is more valid because it uses more mathematics. </span>
Answer:
Mass of the aluminium chunk = 278.51 g
Explanation:
For an isolated system as given the energy lost and gains in the system will be zero therefore sum of all transfer of energy will be zero,as the temperature will also remain same
A specific heat formula is given as
Energy Change = Mass of liquid x Specific Heat Capacity x Change in temperature
Q = m×c×ΔT
Heat gain by aluminium + heat lost by copper = 0 (1)
For Aluminium:
Q =
Q = m x 17.94 joule
For Copper:
Q= 4996.53 Joule
from eq 1
m x 17.94 = 4996.53
Mass of the aluminium chunk = 278.51 g