KE = 1/2 mv^2
in this case, the initial kinetic energy which is converted to heat is
KE = 1/2 1400 (12)^2
KE = 100,800 J
Answer:
g ≈ 7.4 m/s²
Explanation:
The acceleration due to gravity on planet XX is ...
g = GM/r² = (6.67·10^-11 × 4·10^22)/(6·10^5)^2
g ≈ 7.4 m/s²
Answer:
C. 5.6 × 10^11 N/C
Explanation:
The electric field
at a distance
from a charge
is given by

where
is the coulomb's constant.
Now, in our case

;
therefore,


which is choice C from the options given<em> (at least it resembles it).</em>
(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
Answer:
a) 37.70 m/s
b)710.6 m/s²
Explanation:
Given that ;
Mass of object = 2 kg
Radius of the motion = 2m
Frequency of motion = 3 rev/s
The formula to apply is;
v= 2πrf where v is linear speed
v = 2×π×2×3 =12π = 37.70 m/s
Centripetal acceleration is given as;
a= 4×π²×r×f²
a= 4×π²×2×3²
a=710.6 m/s²