<u>Option b. </u>A smaller magnitude of momentum and more kinetic energy.
<h3>What is a momentum?</h3>
- In Newtonian physics, an object's linear momentum, translational momentum, or simply momentum is defined as the product of its mass and velocity.
- It has both a magnitude and a direction, making it a vector quantity. The object's momentum, p, is defined as: p=mv if m is the object's mass and v is its velocity (also a vector quantity).
- The kilogram metre per second (kg m/s), or newton-second in the International System of Units (SI), is the unit used to measure momentum.
- The rate of change of a body's momentum is equal to the net force exerted on it, according to Newton's second law of motion.
To know more about momentum, refer:
brainly.com/question/1042017
#SPJ4
Answer:
ni = 2.04e19
Explanation:
we know that in semiconductor like intrinsic, when electron leave the band, it leave a hole in valence band so we have
n = p = ni
from intrinsic carrier concentration



1.7 = ni * 1.6*10^{-19} * (.35 + .17)
ni = 2.014 *10^{19} m^{-3}
ni = 2.04e19
I’m gonna need more information about this
Model I'm guessing. Coz that's using an object to explain
Answer:
w = 706.32 [N]
Explanation:
The force due to gravitational acceleration can be calculated by means of the product of mass by gravitational acceleration.
w = m*g
where:
w = weight [N] (units of Newtons)
m = mass = 72 [kg]
g = gravity acceleration = 9.81 [m/s²]
Then we have:
![w = 72*9.81\\w = 706.32 [N]](https://tex.z-dn.net/?f=w%20%3D%2072%2A9.81%5C%5Cw%20%3D%20706.32%20%5BN%5D)