Answer:
30.12 g/m is the molar mass of the compound
Explanation:
Freezing point depression to solve this. The formula for the colligative property is:
ΔT = Kf . m
ΔT = T° freezing pure solvent - T° freezing solution
Kf = Cryoscopic constant
m = molality (mol/kg)
T° freezing pure benzene: 5.5°C
(5.5°C - 1.02°C) = 5.12 °C/m . m
4.48°C = 5.12 °C/m . m
4.48°C / 5.12 °C/m = m → 0.875 mol/kg
Mol = mass / molar mas
Molality = mol /kg
Let's find out the molar mass, with this equation:
(6.59 g / Molar mass) / 0.250 kg = 0.875 mol/kg
6.59 g / molar mass = 0.875 mol/kg . 0.250 kg
6.59 g / molar mass = 0.21875 mol
6.59 g / 0.21875 mol = molar mass → 30.12 g/m
The third element in group nine is: I<span>ridium</span>
<span>The choices are as follows:
h2o + 2o2 = h2o2
fe2o3 + 3h2 = 2fe + 3h2o
al + 3br2 = albr3
caco3 = </span><span>cao + co2
The correct answers would be the second and the last option. The equations that are correctly balanced are:
</span> fe2o3 + 3h2 = 2fe + 3h2o
caco3 = cao + co2
To balance, it should be that the number of atoms of each element in the reactant and the product side is equal.
Answer: B
Explaination: The liquid solution changed color means is turned into a different substance with different properties. It is chemical change .