<span>Atmospheric Pressure</span>
1) H2O is able to dissolve both polar molecules and non polar ones
2) due to its extreme polarity it can even dissolve some I onic compounds
3 the h2o molecule itself is small in size
Answer:
- The molarity of the student's sodium hydroxide solution is 0.0219 M
Explanation:
<u>1) Chemical reaction.</u>
a) Kind of reaction: neutralization
b) General form: acid + base → salt + water
c) Word equation:
- sodium hydroxide + oxalic acid → sodium oxalate + water
d) Chemical equation:
- NaOH + H₂C₂O₄ → Na₂C₂O₄ + H₂O
b) Balanced chemical equation:
- 2NaOH + H₂C₂O₄ → Na₂C₂O₄ + 2H₂O
<u>2) Mole ratio</u>
- 2mol Na OH : 1 mol H₂C₂O₄ :1 mol Na₂C₂O₄ : 2 mol H₂O
<u>3) Starting amount of oxalic acid</u>
- mass = 28 mg = 0.028 g
- molar mass = 90.03 g/mol
- Convert mass in grams to number of moles, n:
n = mass in grams / molar mass = 0.028 g / 90.03 g/mol = 0.000311 mol
<u>4) Titration</u>
- Volume of base: 28.4 mL = 0.0248 liter
- Concentration of base: x (unknwon)
- Number of moles of acid: 2.52 mol (calculated above)
- Proportion using the theoretical mole ratio (2mol Na OH : 1 mol H₂C₂O₄)

That means that there are 0.000622 moles of NaOH (solute)
<u>5) Molarity of NaOH solution</u>
- M = n / V (liter) = 0.000622 mol / 0.0284 liter = 0.0219 M
That is the correct number using <em>three signficant figures</em>, such as the starting data are reported.
Answer:
The water in the hydrate (referred to as "water of hydration") can be removed by heating the hydrate. When all hydrating water is removed, the material is said to be anhydrous and is referred to as an anhydrate.
Explanation:
The density can be calculated using the following rule:
density = mass/volume
therefore,
volume = mass/density
we have the mass=22 mg=0.022 grams and density=0.754g/cm^3
substituting in the above equation, we can calculate the volume as follows:
volume = 0.022/0.754 = 0.0291 cm^3