The accepted concentration of chlorine is 1.00 ppm that is 1 gram of chlorine per million of water.
The volume of water is
.
Since, 1 gal= 3785.41 mL
Thus, 
Density of water is 1 g/mL thus, mass of water will be
.
Since, 1 grams of chlorine →
grams of water.
1 g of water →
g of chlorine and,
of water →86.6 g of chlorine
Since, the solution is 9% chlorine by mass, the volume of solution will be:

Thus, volume of chlorine solution is 9.62\times 10^{2} mL.
In the reaction as follows: NH2- + CH3OH → NH3 + CH3O−, NH2- is the Brønsted-Lowry base.
BRØNSTED-LOWRY BASE:
- According to Bronsted-Lowry definition of a base and acid, a base is substance that accepts an hydrogen ion or proton (H+) while an acid is a substance that donates a proton.
- According to this reaction given as follows: NH2 + CH3OH → NH3+ CH3O-
- NH2- is a reactant that accepts a hydrogen ion (H+) to become NH3+
- NH3+CH3OH is a reactant that donates hydrogen ion (H+)
- Since NH2- accepts a proton, this means that in the reaction as follows: NH2 + CH3OH → NH3 + CH3O−, NH2- is the Brønsted-Lowry base.
Learn more at: brainly.com/question/21736327?referrer=searchResults
Answer:
Here’s what I get.
Explanation:
- The atomic number is the number of protons in the nucleus of an atom.
- The number of protons determines the number of electrons.
- The number of electrons determines the chemical properties of the element,
Thus, the atomic number determines the identity of the element.
The atomic mass does not affect the chemical properties, so different isotopes of an element behave alike.
Answer:
3. Equal numbers of protons and neutrons
Explanation:
The nucleus becomes unstable if the ratio of protons to neutrons is less than 1:1 or more than 1:1.5.
The most stable nucleus has a neutron proton ratio of 1:1 which means that they can not release a neutron or a proton to decay.
Nucleus 3 is therefore the most stable.
Answer: 362,07 cm3
To answer this question you need to convert the lb into gram first. One lb equal to 453.592g, so: 3.6lb x 453.592gram/lb= 1632.9312gram.
Now we have mass(1632.9312g), density (4.51g/cm3). Volume is mass divided by density. The equation would be:
Volume= mass/density
Volume = 1632.9312gram / (4.51g/cm3)= 362,07 cm3