<span>C. Measure the soil's volume and then the volume of water that the soil can absorb.</span>
<h3><u>Answer;</u></h3>
Universe, galaxy, solar system, planet, moon
<h3><u>Explanation;</u></h3>
- <u>A galaxy</u>, such as our Milky Way Galaxy, is a collection of solar systems orbiting around a central core.
- <u>A solar system</u> consists of a star, normally the sun and all of its planets, asteroids, comets and other bodies.
- <u>A planet</u> is a nearly spherical body which is in orbit around the Sun. Planets are larger than moons.
- <u>Moons</u> are typically rocky bodies which are in orbit around planets.
Inertia is that quantity which depends solely upon mass. The more mass, the more inertia. Momentum is another quantity in Physics which depends on both mass and speed.
Edit
In physics, power is the rate of doing work or of transferring heat, i.e. the amount of energy transferred or converted per unit time. Having no direction, it is a scalarquantity. In the International System of Units, the unit of power is the joule per second (J/s), known as the watt in honour of James Watt, the eighteenth-century developer of the condenser steam engine. Another common and traditional measure is horsepower (comparing to the power of a horse). Being the rate of work, the equation for power can be written:
Power
Common symbols
Derivations from
other quantities
P = E/t
P = F·v
P = V·I
P = T·ω
As a physical concept, power requires both a change in the physical system and a specified time in which the change occurs. This is distinct from the concept of work, which is only measured in terms of a net change in the state of the physical system. The same amount of work is done when carrying a load up a flight of stairs whether the person carrying it walks or runs, but more power is needed for running because the work is done in a shorter amount of time.
Answer:
a) fem = - 2.1514 10⁻⁴ V, b) I = - 64.0 10⁻³ A, c) P = 1.38 10⁻⁶ W
Explanation:
This exercise is about Faraday's law
fem = 
where the magnetic flux is
Ф = B x A
the bold are vectors
A = π r²
we assume that the angle between the magnetic field and the normal to the area is zero
fem = - B π 2r dr/dt = - 2π B r v
linear and angular velocity are related
v = w r
w = 2π f
v = 2π f r
we substitute
fem = - 2π B r (2π f r)
fem = -4π² B f r²
For the magnetic field of Jupiter we use the equatorial field B = 428 10⁻⁶T
we reduce the magnitudes to the SI system
f = 2 rev / s (2π rad / 1 rev) = 4π Hz
we calculate
fem = - 4π² 428 10⁻⁶ 4π 0.10²
fem = - 16π³ 428 10⁻⁶ 0.010
fem = - 2.1514 10⁻⁴ V
for the current let's use Ohm's law
V = I R
I = V / R
I = -2.1514 10⁻⁴ / 0.00336
I = - 64.0 10⁻³ A
Electric power is
P = V I
P = 2.1514 10⁻⁴ 64.0 10⁻³
P = 1.38 10⁻⁶ W