Answer:
6.32s
Explanation:
Given parameters:
Length of track and distance covered = 200m
Acceleration = 10m/s²
Unknown:
Time taken to cover the track = ?
Solution:
To solve this problem, we apply one of the motion equations as shown below:
S = ut +
at²
S is the distance covered
t is the time taken
a the acceleration
u is the initial velocity
The initial velocity of Superman is 0;
So;
S =
at²
200 =
x 10 x t²
200 = 5t²
t² = 40
t = 6.32s
If you're moving, then you have kinetic energy.
If you're not at the bottom yet, then you still have
some potential energy left.
Answer:
trail mix, soup, and gold
hope this helps
have a good day :)
Explanation:
Answer:
Height from ground is 8 m where string will break
Explanation:
Let the string makes some angle with the vertical after some instant of time
So here we have


now by energy conservation we have




For string break down we have


Now height from the ground is given as



Answer:
128.9 N
Explanation:
The force exerted on the golf ball is equal to the rate of change of momentum of the ball, so we can write:

where
F is the force
is the change in momentum
is the time interval
The change in momentum can be written as

where
m = 0.04593 kg is the mass of the ball
u = 0 is the initial velocity of the ball
is the final velocity of the ball
Substituting into the original equation, we find the force exerted on the golf ball:
