Answer:
Option D.
Value cannot be calculated without knowing the speed of the train
Explanation:
The speed of the beam can only be calculated accurately when the speed of the train is put into consideration. Based of the theory of relativity, the observer is on the ground, and the train is moving with the beam of light inside it. This causes a variation in the reference frames when making judgements of the speed of the beam. The speed of the beam will be more accurate if the observer is moving at the same sped of the train, or the train is stationary.
To get the correct answer, we have to subtract the speed of the train from the speed calculated.
K.E. = 1/2 mv²
K.E. is directly proportional to v^2
So, when K.E. increase by 2, K.E. increase by root. 2
v' = 1.41v
original v value was 3 so, final would be:
v' = 1.41*3 = 4.23
After round-off to it's tenth value, it will be:
v' = 4.2
So, option B is your answer!
Hope this helps!
Answer:
El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.
Explanation:
El gasto es el flujo volumétrico de gasolina (
), medido en pies cúbicos por segundo, que sale de la manguera. Asumiendo que la velocidad de salida es constante, tenemos que el gasto a través de la manguera es:
(1)
Donde:
- Diámetro de la manguera, medido en pies.
- Velocidad medida de salida, medida en pies por segundo.
Si sabemos que
y
, entonces el gasto de gasolina es:


El gasto de gasto es de aproximadamente 0.0273 pies cúbicos por segundo.
Answer:
Acceleration, 
Explanation:
Initial speed of the skater, u = 8.4 m/s
Final speed of the skater, v = 6.5 m/s
It hits a 5.7 m wide patch of rough ice, s = 5.7 m
We need to find the acceleration on the rough ice. The third equation of motion gives the relationship between the speed and the distance covered. Mathematically, it is given by :




So, the acceleration on the rough ice
and negative sign shows deceleration.
Is this a true and false question?