1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
2 years ago
13

A microphone is attached to a spring that is suspended from the ceiling, as the drawing indicates. Directly below on the floor i

s a stationary 440-Hz source of sound. The microphone vibrates up and down in simple harmonic motion with a period of 2.0 s. The difference between the maximum and minimum sound frequencies detected by the microphone is 2.1 Hz. Ignoring any reflections of sound in the room and using 343 m /s for the speed of sound, determine the amplitude of the simple harmonic motion.
Physics
1 answer:
svet-max [94.6K]2 years ago
4 0

Answer:

0.261\ \text{m}

Explanation:

\Delta f = Change in frequency = 2.1 Hz

f = Frequency of source of sound = 440 Hz

v_m= Maximum of the microphone

v = Speed of sound = 343 m/s

T = Time period = 2 s

We have the relation

\Delta f=2f\dfrac{v_m}{v}\\\Rightarrow v_m=\dfrac{\Delta fv}{2f}\\\Rightarrow v_m=\dfrac{2.1\times 343}{2\times 440}\\\Rightarrow v_m=0.8185\ \text{m/s}

Amplitude is given by

A=\dfrac{v_m T}{2\pi}\\\Rightarrow A=\dfrac{0.8185\times 2}{2\pi}\\\Rightarrow A=0.261\ \text{m}

The amplitude of the simple harmonic motion is 0.261\ \text{m}.

You might be interested in
17.Explain the different ways that an object can become electrically charged.
Debora [2.8K]

17.

There are three different methods for charging objects:

- Friction: in friction, two objects are rubbed against each other. As a result, electrons can be passed from one object to the other, so one object will gain a net negative charge while the other object will gain a net positive charge due to the lack of electrons.

- Conduction: this occurs when two conductive objects are put in contact with each other, and charges (electrons, usually) are transferred from one object to the other one.

- Induction: this occurs when two objects are brought closer to each other, but not in contact. If one of the two objects has a net charge (different from zero) on its surface, then it will induce a movement of charges in the second object: in particular, in the second object, charges of the opposite polarity will be attracted towards the first object, while charges of same polarity will be repelled further away.

18.

Charged objects produce around themselves an electric field. The strenght of the electric field is given by (assuming the charged objects are spherical)

E=k\frac{q}{r^2}

where k is the Coulomb's constant, q is the magnitude of the charge and r the distance from the centre of the charge. As we see, the strength of the field is inversely proportional to the square of the distance.

Also, the direction of the field is determined by the sign of the charge:

- if the charge is positive, the electric field points away from the charge (this means that other positive charges in the field will be repelled away)

- if the charge is negative, the electric field points towards the charge (this means that other positive charges in the field will be attracted towards it)

19.

Electrical force is given by:

F=k\frac{q_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 are the two charges, and r their separation.

Gravitational force is given by:

F=G\frac{m_1 m_2}{r^2}

where G is the gravitational constant, m1 and m2 are the masses of the two objects, and r their separation.

Similarities between the two forces:

- Both are inversely proportional to the square of the distance between the two objects, r

- Both are non-contact forces (the two objects can experience the forces even if they are not in contact)

- Both forces have infinite range

Differencies between the two forces:

- The electric force can be either attractive or repulsive, while the gravitational force is attractive only

- The electric force is much stronger than the gravitational force, due to the much larger value of the Coulomb's constant k compared to the gravitational constant G

4 0
3 years ago
A sample of gas has a volume of 215 cm3 at 23.5 °c and 84.6 kpa. what volume (cm3 will the gas occupy at stp
Dafna11 [192]
The answer is 165.3 cm³.

P1 * V1 / T1 = P2 * V2 / T2

The initial sample:
P1 = 84.6 kPa
V1 = 215 cm³
T1 = 23.5°C = 23.5 + 273 K = 296.5 K

At STP:
P2 = 101.3 kPa
V2 = ?
T2 = 273 K

Therefore:
84.6 * 215 / 296.5 = 101.3 * V2 / 273
61.34 = 101.3 * V2 / 273
V2 = 61.34 * 273 / 101.3
V2 = 165.3 cm³
6 0
3 years ago
A little girl kicks a soccer ball. It goes 10 feet and comes back to her. How is this possible?
marta [7]
A classic puzzle...

She either kicked it at a wall <em>exactly</em><em /> 10 foot in front of her, where the ball rebounded off the wall.

Or, she kicked the ball straight up, vertically, at a <em>90 degree angle,</em> where due to the law of gravity, which states that anything that goes up must come down, when the soccer ball reaches exactly 10 feet, it falls back down.
(Note: This is nearly impossible to achieve -- exactly 10 feet.)

8 0
3 years ago
Which of the following is an example of a chemical change?
ss7ja [257]

Answer:

Burning Paper

Explanation:

This is a chemical reaction, because new substances are formed

6 0
3 years ago
A 0.5 kg rock is dropped from a height of 1.0 m above the ground. Approximately how much kinetic energy will be stored in the ro
irina1246 [14]

Answer:

2.45 J

Explanation:

The following data were obtained from the question:

Mass (m) = 0.5 kg

Height (h) = 1 m

Kinetic energy (KE) =?

Next, we shall determine the velocity of the rock after it has fallen half way. This can be obtained as follow:

Initial velocity (u) = 0 m/s

Acceleration due to gravity (g) = 9.8 m/s²

Height (h) = 1/2 = 0.5 m

Final velocity (v) =?

v² = u² + 2gh

v² = 0² + (2 × 9.8 × 0.5)

v² = 9.8

Take the square root of both side

v = √9.8

v = 3.13 m/s

Finally, we shall determine the kinetic energy of the rock after it has fallen half way. This can be obtained as follow:

Mass (m) = 0.5 kg

Velocity (v) = 3.13 m/s

Kinetic energy (KE) =?

KE = ½mv²

KE = ½ × 0.5 × 3.13²

KE = 0.25 × 9.8

KE = 2.45 J

Therefore, the kinetic energy of the rock after it has fallen half way is 2.45 J

8 0
3 years ago
Other questions:
  • If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the
    13·1 answer
  • An element's atomic number is 77. How many protons would an atom of this element have? protons
    11·2 answers
  • What is an example of a voltage source
    14·2 answers
  • A boy of mass 50 kg exerts a pressure of 25000 pa calculate the area
    6·1 answer
  • Somebody help me!! Why do you think it's called the International Space Station???
    5·1 answer
  • True or False: Our food has potential energy?
    7·2 answers
  • An object of mass 8kg is attached to massless string of length 2m and swum with a tangential velocity of 3 what is the tension o
    10·1 answer
  • A laser of wavelength 720 nm illuminates a double slit where the separation between the slits is 0.22 mm. Fringes are seen on a
    11·1 answer
  • The law of Conservation of energy states that energy can be transformed from one form to another, but it cannot be _______ or __
    10·2 answers
  • If the electric field is 100N/C at a distance of 50 cm from a point charge , what is the value of ?.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!