<span>When two or more identical capacitors (or resistors) are connected
in series across a potential difference, the potential difference divides
equally among them.
For example, if you have nine identical capacitors (or resistors) all
connected end-to-end like elephants in a circus parade, and you
connect the string to a source of 117 volts (either AC or DC), then
you will measure
(117v / 9) = 13 volts
across each unit in the string.</span>
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
Answer:
T1 = 130N, T2 = 370N
Explanation:
In order for the system to be at rest, the sum of all forces must be zero and the torque around a point on the beam must be zero.
1. forces:
Let tension in rope 1 be T1 and in rope 2 be T2:
ma = T1 + T2 - 100N - 400N = 0
(1) T1 + T2 = 500N
2. torque around the center point of the beam:
τ = r x F = 5*T1 + 3*400N - 5*T2 = 0
(2) T1 - T2 = -240N
Solving both equations:
T1 = 130N
T2 = 370N
Answer:
Detailed step wise solution is attached below
Explanation:
(a) wavelength of the initial note 2.34 meters
(b) wavelength of the final note 0.389 meters
(d) pressure amplitude of the final note 0.09 Pa
(e) displacement amplitude of the initial note 4.78*10^(-7) meters
(f) displacement amplitude of the final note 3.95*10^(-8) meters