The answer would be a frog!
The minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s. The correct option is D.
<h3>What is mechanical energy?</h3>
The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.
M.E = KE +PE
A boy is trying to roll a bowling ball up a hill. The friction is ignored. The ball must have to reach the top of the hill with a velocity. The acceleration due to gravity, g = 9.8 m/s²
The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.
M.E bottom of hill = M.E on top of hill
Kinetic energy + Potential energy = Kinetic energy + Potential energy
1/2 mu² + 0 = 0 + mgh
At the top of hill, the velocity will become zero. So, final kinetic energy is zero.
Substituting the values, we have
1/2 x u² = 9.8 x 22.5
u = sqrt [2 x9.8 x 22.5 ]
u= 21 m/s
Thus, the minimum initial velocity that the ball must have for it to reach the top of the hill is 21 m/s.
Learn more about mechanical energy.
brainly.com/question/13552918
#SPJ1
Answer:
Before giving an injection, a nurse dabs some alcohol onto the patient`s arm. This makes the patient`s skin feels cold. Explain Why ?
<em> Evaporative cooling makes this to be possible</em>
Explanation:
The concept
For a liquid to evaporate, there must be a breakdown of the bond between the molecules of the liquid. These bonds are broken when the molecules gain heat energy. So basically evaporation occurs when the molecules of the substance gain energy in form of heat.
Our Scenario
Just like the way our body excretes sweat on a sunny day, alcohol takes energy from the skin to evaporate. The bond holding the molecules of alcohol breaks faster due to its low boiling point and this account why it evaporates faster. The sudden evaporation of alcohol when dabbed on the skin results in quick utilization of heat energy making the skin feel cold for some time.
The utilization of heat energy from the skin results in evaporation cooling which makes the skin feel colder.
Answer:
Suppose two objects of different masses are moving with different velocities in the same direction on a straght-line before collision. After collision, they stick together and move with common (the same) velocity