Refer to the figure shown below.
Let m₁ and m₂ e the two masses.
Let a = the acceleration.
Let T = tension over the frictionless pulley.
Write the equations of motion.
m₂g - T = m₂a (1)
T - m₁g = m₁a (2)
Add equations (1) and (2).
m₂g - T + T - m₁g = (m₁ + m₂)a
(m₂ - m₁)g = (m₁ + m₂)a
Divide through by m₁.
(m₂/m₁ - 1)g = (1 + m₂/m₁)a
Define r = m₂/m₁ as the ratio of the two masses. Then
(r - 1)g = (1 +r)a
r(g-a) = a + g
r = (g - a)/(g + a)
With = 2 ft/s from rest, the acceleration is
a = 2/32.2 = 0.062 ft/s²
Therefore
r = (32.2 - 0.062)/(32.2 + 0.062) = 0.9962
Answer:
The ratio of masses is 0.9962 (heavier mass divided by the lighter mass).
Answer:
1. Hydrogen
Atomic # = 1
Atomic Mass = 1.00794 ( If you round it it's 1.008 )
# of protons = 1
# of neutrons = none
# of electrons = 1
Answer:
Explanation:
The voltage of a disconnected charged capacitor increases when the plate area is decreased.
When plate area decreases , capacitance C decreases , but charge Q remains constant .
Q = C V where C is capacitance and V is voltage .
when C decreases , V increases for keeping Q constant .
So the statement is true.
The electric field is dependent on the charge density on the plates.
This statement is true .
The voltage of a connected charged capacitor remains the same when the plate area is decreased .
For a connected capacitor , V or voltage is constant which is equal to voltage of charging battery .
So the statement is true .
Measuring density: Measure the mass (in grams) of each mineral sample available to you. The mass of each sample is measured using a balance or electronic scale. Record mass on a chart.
When she starts out, he is (40x2.5)= 100 miles ahead of her.
She gains (65-40)= 25 miles on him every hour.
It takes her (100/25)= 4 hours to catch up to him.