The frequency of rotation of Mars is 0.0000113 Hertz.
<u>Given the following data:</u>
- Period = 1 day and 37 minutes.
To find the frequency of rotation in Hertz:
First of all, we would convert the the value of period in days and minutes to seconds because the period of oscillation of a physical object is measured in seconds.
<u>Conversion:</u>
1 day = 24 hours
24 hours to minutes =
×
=
minutes

1 minute = 60 seconds
1477 minute = X seconds
Cross-multiplying, we have:
× 
X = 88620 seconds
Now, we can find the frequency of rotation of Mars by using the formula:

<em>Frequency </em><em>of rotation</em> = <em>0.0000113 Hertz</em>
Therefore, the frequency of rotation of Mars is 0.0000113 Hertz.
Read more: brainly.com/question/14708169
16/9 m/s^2
negative 4/3 m/s^2
14 m/s
the last one is too detailed to do in my head while on the bus; sorry
Answer:
Explanation:
Initial height from the ground = .41 m
Final height = 1m
Height by which Kelli was raised ( h )= .59 m
When she passes through the lowest point , she loses P E
= mgh
= 440 x .59
= 259.6 J
kinetic energy possessed by her
= 1/2 mv²
= .5 x (440/9.8) x 2²
= 89.8 J
Difference of energy is lost due to work by air friction
work done by friction = 89.8 - 259.6
= - 169.8 J
Answer:
C. both forces have the same magnitude
Explanation:
Here the action force is equal to the reaction force in accordance with the Newton's third law of motion.
Also when we apply the conservation of momentum so that the momentum bullet and the momentum of the gun are equal and according to the second law of motion by Newton, we have force equal to the rate of change in momentum.
We have the equation for momentum as:

Newton's second law is Mathematically given as:

Momentum is constant and the reaction time is equal, so the force exerted will also be equal.