Subduction is, "<span>the sideways and downward movement of the edge of a plate of the earth's crust into the mantle beneath another plate." The basalt would most likely be swallowed up into the ground.
Hope this is what you were looking for! :)
</span>
Answer:
The answer of this is question is A.
Answer:
(1) Resonance
Explanation:
Resonance is the process whereby a system is set into vibration due to the vibration of a nearby system with larger amplitude. The frequency at which this vibration takes place is called the resonant frequency.
It is a phenomenon of amplification that occurs when the frequency of a periodically applied force is in harmonic proportion to the natural frequency of the system on which it acts.
Answer: 62 μT
Explanation:
Given
Length of rod, l = 1.33 m
Velocity of rod, v = 3.19 m/s
Induced emf, e = 0.263*10^-3 V
Using Faraday's law, the induced emf of a rod can be gotten by the formula
e = blv where,
e = induced emf of the rod
b = magnetic field of the rod
l = length of the rod
v = velocity of the rod. On substituting, we have
0.263*10^-3 = b * 1.33 * 3.19
0.263*10^-3 = b * 4.2427
b = 0.263*10^-3 / 4.2427
b = 0.0000620 T
b = 62 μT
Thus, the strength of the magnetic field is 62 μT
When is at the end of the runway the velocity of the plane is given by the equation

where s=1800 m is the runway length. Thus
At half runway the velocity of the plane is

Therefore at midpoint of runway the percentage of takeoff velocity is
‰