Answer:
Density is independent of the
amount of the sample. (D)
Explanation:
Because density is an intrinsic property of matter.
hope it helps!
Answer:
D. The motion cannot be determined without knowing the speeds of the objects before the collision.
Explanation:
This question is tricky! We know the object moving to the left has a greater mass than the one moving to the right. We'd <em>assume</em> they would move to the left because the leftwards object has a greater mass, right?
Not. So. Fast.
We can solve for the objects' final velocity using the formula for momentum, m₁v₁ + m₂v₂ = (m₁ + m₂)v .
Now here's where the trap is sprung: <em>we don't think about the equation</em>. This shows that the final velocity of the objects and the direction depends on both the mass of the objects <em>and</em> their initial velocity.
Basically, what if the 3 kg object is moving at 1 m/s and the 4 kg object is moving at –0.5 m/s? The objects would move to the <em>right</em> after the collision!
Do we know the velocity of these objects? No, right?
That means we <em>can't</em> determine the direction of their motion <u>unless we know their initial, pre-collision velocity</u>. This question is tricky because we look at the 4 kg vs. 3 kg and automatically assume the 4 kg object would dictate the direction of motion. That's not true. It depends on velocity as well.
I hope this helps you! Have a great day!
I believe the answer is b) slowly heating the surface
Answer:
Explanation:
The right side of your heart receives oxygen-poor blood from your veins and pumps it to your lungs, where it picks up oxygen and gets rid of carbon dioxide. The left side of your heart receives oxygen-rich blood from your lungs and pumps it through your arteries to the rest of your body.
#I AM ILLITERATE
Answer:
10 kJ
Explanation:
W = Fd
W = (μN)(vt)
W = μ(mg)vt
W = 0.7(42.9)(9.81)(9)(3.8)
W = 10,075.12506 J
W ≈ 10 kJ