Answer:
= 17% (v/v)
Explanation:
% by Volume = (Volume HCl / Volume of Solution)100%
= 15ml/(75ml + 15ml) x 100% = 16.66666667% (calculator answer)
= 17% (v/v) 2 sig figs. based on volume values given.
The change in the velocity = 4 m/s
Acceleration = 4 m/s²
<h3>Further explanation</h3>
Given
vo = initial velocity = 4 m/s
vf = final velocity = 8 m/s
t = 1 s
Required
The change in the velocity
Acceleration
Solution
the change in velocity =

Acceleration = ratio of a change in velocity and the time

Input the value :

Answer:- C. H
Explanations:- Reduction is gain of electron. In other words we could say that decrease in oxidation number is reduction.
As per the rules, oxidation number of hydrogen in its compounds is +1(except metal hydrides) and the oxidation number of oxygen in its compounds is -2.
The oxidation number in elemental form is zero.
In
, the oxidation number of H is +1 and oxidation number of O is -2. Oxidation number of Cl in
is -1. On product side, the oxidation number of hydrogen in
is zero and in
the oxidation number of H is +1 and that of O is -2. Oxidation number of Cl in
is 0.
From above data, Oxidation number of O is -2 on both sides so it is not reduced.
Oxidation number of Cl is changing from -1 to 0 which is oxidation.
Oxidation number of H is changing from +1 to 0 which is reduction.
So, the right choice is C.H
<span>Answer:
A 0.04403 g sample of gas occupies 10.0-mL at 289.0 K and 1.10 atm. Upon further analysis, the compound is found to be 25.305% C and 74.695% Cl. What is the molecular formula of the compound?
--------------------------------------...
Seems like I did a problem very similar to this--this must be the "B" test. But the halogen was different.
25.305% C/12 = 2.108
74.695% Cl/35.5 = 2.104
So the empirical formula would be CH. However, there are many compounds which fit this bill, so we have to use the gas data. (And I made, in the previous problem, the simplifying assumption that 289C and 1.10 atm would offset each other, so I'll do that, too.)
0.044 grams/10 ml = x/22.4 liters
0.044g/0.010 liters = x/22.4 liters
22.4 liters/0.010 liters = 2240 (ratio)
2240 x .044 = 98.56 (actual atomic weight)
CCl = 35.5+12 or 47.5, so two of those is 95 grams/mole.
This is sufficiient to distinguish C2CL2, (dichloroacetylene)
from C6CL6 (hexachlorobenzene) which would
mass 3 times as much.</span>