Answer:
a) 23.51 m/s
b) 1.07 kg
Explanation:
Parameters given:
Kinetic energy, K = 295 J
Momentum, p = 25.1 kgm/s
a) The kinetic energy of a body is given as:

where m = mass of the body and v = speed of the body
We know that momentum is given as:
p = mv
Therefore:
K = 1/2 * pv
=> v = 2K / p
v = (2 * 295) / 25.1 = 23.51 m/s
The velocity of the body at that instant is 23.51 m/s.
b) Momentum is given as:
p = mv
=> m = p / v
m = 25.1 / 23.51 = 1.07 kg
The mass of the body at that instant is 1.07 kg
Answer:
a)11.25 J
b)Number of revolution = 1
Explanation:
Given that
Radius ,r= 0.8 m
m= 0.3 kg
Initial speed ,u= 10 m/s
final speed ,v= 5 m/s
a)
Initial energy


KEi= 15 J
Final kinetic energy


KEf=3.75 J
The energy transformed from mechanical to internal = 15 - 3.75 J = 11.25 J
b)
The minimum value to complete the circular arc

Now by putting the values

V= 2.82 m/s
So kinetic energy KE


KE=1.19 J
ΔKE= KEi - KE
ΔKE= 15- 1.19 J
ΔKE=13.80 J
The minimum energy required to complete 2 revolutions = 2 x 11.25 J
= 22.5 J
Here 22.5 J is greater than 13.8 J.So the particle will complete only one revolution.
Number of revolution = 1
Use pythagorean theorem

to find the opposite side, which is 7.3
so then you can just use inverse sinA=7.3/10 which equals 46.9 degrees