We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Previous rocks melt and collide and to form igneous rocks.
Igneous rocks disintegrate due to weather disruptions and get carried away by water, where they form sedimentary rock strata by lithification.
Igneous and sedimentary change by heat and pressure to form metamorphic rocks.
Metamorphic rocks melt and become igneous rocks.
Answer:
- increasing use of hybrid crops
- altering genes in DNA to create new plants
- developing disease or pest resistant crops
Explanation:
The use of genetic factors to influence the growth of a plant encompasses manipulating the genetic constituent (gene) of such plant.
For example,
- Increasing use of hybrid crops entails mating two pure bred plants based on a gene of interest responsible for a particular trait, to form a hybrid.
- Altering genes in DNA to create new plants is also a genetic factor as it has to with gene modification.
- developing disease or pest resistant crops means that the genetic make up of such plant has been modified to be resistant to pest/disease.
Answer:
400m
Explanation:
Brainliest? :))
Let your initial displacement from your home to the store be
Dd
>
1 and your displacement from the store to your friend’s house
be Dd
>
2.
Given: Dd
>
1 = 200 m [N]; Dd
>
2 = 600 m [S]
Required: Dd
>
T
Analysis: Dd
>
T 5 Dd
>
1 1 Dd
>
2
Solution: Figure 6 shows the given vectors, with the tip of Dd
>
1
joined to the tail of Dd
>
2. The resultant vector Dd
>
T is drawn in red,
from the tail of Dd
>
1 to the tip of Dd
>
2. The direction of Dd
>
T is [S].
Dd
>
T measures 4 cm in length in Figure 6, so using the scale of
1 cm : 100 m, the actual magnitude of Dd
>
T is 400 m.
Statement: Relative to your starting point at your home, your
total displacement is 400 m [S].