It is 72 km/h
I hope it helps
Answer:
Explanation:
Magnitude of frictional force = μ mg
μ is either static or kinetic friction.
To start the crate moving , static friction is calculated .
a ) To start crate moving , force required = μ mg where μ is coefficient of static friction .
force required =.517 x 56.6 x 9.8 = 286.76 N .
b ) to slide the crate across the dock at a constant speed , force required
= μ mg where μ is coefficient of kinetic friction , where μ is kinetic friction
= .26 x 56.6 x 9.8 = 144.21 N .
Answer:
Strong nuclear force is 1-2 order of magnitude larger than the electrostatic force
Explanation:
There are mainly two forces acting between protons and neutrons in the nucleus:
- The electrostatic force, which is the force exerted between charged particles (therefore, it is exerted between protons only, since neutrons are not charged). The magnitude of the force is given by

where k is the Coulomb's constant, q1 and q2 are the charges of the two particles, r is the separation between the particles.
The force is attractive for two opposite charges and repulsive for two same charges: therefore, the electrostatic force between two protons is repulsive.
- The strong nuclear force, which is the force exerted between nucleons. At short distance (such as in the nucleus), it is attractive, therefore neutrons and protons attract each other and this contributes in keeping the whole nucleus together.
At the scale involved in the nucleus, the strong nuclear force (attractive) is 1-2 order of magnitude larger than the electrostatic force (repulsive), therefore the nucleus stays together and does not break apart.
B. Greenhouse technology
Since the green house will help keep the pest and harmful conditions. The greenhouse will be able to control temperatures and will keep out harmful bugs. You/I will be able to provide the tree with the perfect sequence of growth.
Answer:
a) 35.44 mm
b) 17.67 mm
Explanation:
u = Object distance = 3.6 m
v = Image distance
f = Focal length = 35 mm
= Object height = 1.8 m
a) Lens Equation

The CCD sensor is 35.34 mm from the lens
b) Magnification


The person appears 17.67 mm tall on the sensor