Answer:
Option B. 3.0×10¯¹¹ F.
Explanation:
The following data were obtained from the question:
Potential difference (V) = 100 V.
Charge (Q) = 3.0×10¯⁹ C.
Capacitance (C) =..?
The capacitance, C of a capacitor is simply defined as the ratio of charge, Q on either plates to the potential difference, V between them. Mathematically, it is expressed as:
Capacitance (C) = Charge (Q) / Potential difference (V)
C = Q/V
With the above formula, we can obtain the capacitance of the parallel plate capacitor as follow:
Potential difference (V) = 100 V.
Charge (Q) = 3.0×10¯⁹ C.
Capacitance (C) =..?
C = Q/V
C = 3.0×10¯⁹ / 100
C = 3.0×10¯¹¹ F.
Therefore, the capacitance of the parallel plate capacitor is 3.0×10¯¹¹ F.
The prefix your looking for is centi as in centimeter. I got this answer on google.
So please mark me as Brainiest.
Thomas Edison is the answer im 100% sure of it.
Energy of a wave:
E = nhc/λ
3000 = (n x 6.63 x 10⁻³⁴ x 3 x 10⁸)/(510 x 10⁻⁹)
n = 7.69 x 10 ²¹ photons per second per meter²
2.70 cm² = 2.70/10,000 m²
= 2.7 x 10⁻⁴
Photons per second = 7.69 x 10 ²¹ x 2.7 x 10⁻⁴
= 2.08 x 10¹⁸ photons per second