Answer:
8.88 x 10⁻² M/s
Explanation:
The rate of reaction for:
NO(g) + Cl₂ (g) ⇒ 2NOCl(g)
is rate = -ΔNO/Δt = -ΔCl2/Δt = 1/2 ΔNOCl/Δt
so ΔNOCl/Δt = 2 ΔCl2/Δt = 2 x 4.44 × 10⁻² M/s = 8.88 x 10⁻² M/s
In general given a reaction
aA + bB ⇒ cC + dD
rate = -1/a ΔA/Δt = -1/b ΔB/Δt = 1/c ΔC/Δt = 1/d ΔD/Δt
Answer:
A
Explanation:
CO2 cylinder, 68% full by water capacity, warms up to room temperature (70 oF), the pressure inside the cylinder increases to 837 psi. When the same cylinder reaches 87.9 oF the entire charge becomes a gas no matter what the pressure.
Answer: C
Explanation:
Some poly nuclear aromatic hydrocarbons are not carcinogenic in themselves. However, when these are made to interact with living cells, enzymes in the cells could convert the polynuclear aromatic hydrocarbon into a carcinogenic material such as benzo-[a]-pyrene. This can now interact adversely with the deoxyribonucleic acid of living cells leading to genetic mutation, that is, irreversible changes in the genes of organisms.
This is probably true but I’m not 100% sure
<span>134 ml
First, let's determine how many moles of oxygen we have.
Atomic weight oxygen = 15.999
Molar mass O2 = 2*15.999 = 31.998 g/mol
We have 3 drops at 0.050 ml each for a total volume of 3*0.050ml = 0.150 ml
Since the density is 1.149 g/mol, we have 1.149 g/ml * 0.150 ml = 0.17235 g of O2
Divide the number of grams by the molar mass to get the number of moles
0.17235 g / 31.998 g/mol = 0.005386274 mol
Now we can use the ideal gas law. The equation
PV = nRT
where
P = pressure (1.0 atm)
V = volume
n = number of moles (0.005386274 mol)
R = ideal gas constant (0.082057338 L*atm/(K*mol) )
T = Absolute temperature ( 30 + 273.15 = 303.15 K)
Now take the formula and solve for V, then substitute the known values and solve.
PV = nRT
V = nRT/P
V = 0.005386274 mol * 0.082057338 L*atm/(K*mol) * 303.15 K / 1.0 atm
V = 0.000441983 L*atm/(K*) * 303.15 K / 1.0 atm
V = 0.133987239 L*atm / 1.0 atm
V = 0.133987239 L
So the volume (rounded to 3 significant figures) will be 134 ml.</span>