1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
3 years ago
8

A projectile is fired vertically upwards and reaches a height of 78.4 m. Find the velocity of projection and the time it takes t

o reach its highest point.
Physics
1 answer:
Musya8 [376]3 years ago
7 0

Answer:

1.) U = 39.2 m/s

2.) t = 4s

Explanation: Given that the

height H = 78.4m

The projectile is fired vertically upwards under the acceleration due to gravity g = 9.8 m/s^2

Let's assume that the maximum height = 78.4m. And at maximum height, final velocity V = 0

Velocity of projections can be achieved by using the formula

V^2 = U^2 - 2gH

g will be negative as the object is moving against the gravity

0 = U^2 - 2 × 9.8 × 78.4

U^2 = 1536.64

U = sqrt( 1536.64 )

U = 39.2 m/s

The time it takes to reach its highest point can be calculated by using the formula;

V = U - gt

Where V = 0

Substitute U and t into the formula

0 = 39.2 - 9.8 × t

9.8t = 39.2

t = 39.2/9.8

t = 4 seconds.

You might be interested in
Which of the following has mechanical energy?
KATRIN_1 [288]
Mechanical energy can have mechanical systems. The only mechanical system in the list is the compressed spring. A car battery and a glowing incandescent lightbulb have electrical energy, a nucleus of atom has potential (internal) energy.

5 0
3 years ago
Read 2 more answers
Calculate the electric potential energy in a capacitor that stores 4.0 10-10 C of charge at 250.0 V
Arada [10]
Q = C.v
v = Q/C
v = 4 × 10^(-10)/250
 = 4 × 10^(-10)/2.5 × 10^2
 = 1.6 × 10^(-12) volt
7 0
3 years ago
Read 2 more answers
A particle with charge − 2.74 × 10 − 6 C −2.74×10−6 C is released at rest in a region of constant, uniform electric field. Assum
s2008m [1.1K]

Answer:

241.7 s

Explanation:

We are given that

Charge of particle=q=-2.74\times 10^{-6} C

Kinetic energy of particle=K_E=6.65\times 10^{-10} J

Initial time=t_1=6.36 s

Final potential difference=V_2=0.351 V

We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.

We know that

qV=K.E

Using the formula

2.74\times 10^{-6}V_1=6.65\times 10^{-10} J

V_1=\frac{6.65\times 10^{-10}}{2.74\times 10^{-6}}=2.43\times 10^{-4} V

Initial voltage=V_1=2.43\times 10^{-4} V

\frac{\initial\;voltage}{final\;voltage}=(\frac{initial\;time}{final\;time})^2

Using the formula

\frac{V_1}{V_2}=(\frac{6.36}{t})^2

\frac{2.43\times 10^{-4}}{0.351}=\frac{(6.36)^2}{t^2}

t^2=\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}

t=\sqrt{\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}}

t=241.7 s

Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.

6 0
3 years ago
A student is trying to determine the acceleration of a feather as she drops it to the ground. if the student is looking to achie
Anna [14]

The coordinate system should have the origin at the point where the feather is dropped and the downward direction is to be taken as positive.

All falling bodies experience acceleration towards the center of the Earth due to the force of gravitational attraction exerted on the object by the Earth. A feather, when dropped experiences an acceleration in the downward direction. Since the acceleration of the feather is in the downward direction, a feather, when dropped with zero initial velocity, has its velocity vector directed in the direction of its acceleration.

If the downward direction is taken as positive, the falling feather can be said to have a positive velocity and a positive acceleration.

5 0
3 years ago
The magnetic field of a long, straight, and closely-wound solenoid, inside the solenoid at a point near the center, is 0.645 T.
Savatey [412]

Answer:

B'=1.935 T      

Explanation:

Given that

magnetic field ,B= 0.645 T

We know that magnetic filed in the solenoid is given as

B=\mu _0 n\ I

I=Current

n=Number of turn per unit length

μ0 =magnetic permeability

Now when the current increased by 3 factors

I'=3 I

Then the magnetic filed

B'=\mu _0 n\ I'

B'=\mu _0 n\ (3I)

B'=3 B

That is why

B' = 3 x 0.645 T

B'=1.935 T

Therefore the new magnetic filed will be 1.935 T.

3 0
3 years ago
Other questions:
  • Which location is MOST LIKELY to be struck by a hurricane? A) Charleston, South Carolina B) San Diego, California C) Buffalo, Ne
    13·1 answer
  • Look of the diagram below. What condition does this show?<br>Enter your answer​
    14·1 answer
  • A common flashlight bulb is rated at 0.23 a and 2.9 v (the values of the current and voltage under operating conditions). if the
    12·1 answer
  • Change a speed of 72.4 miles per hour to its equivalent in meters per second.
    9·1 answer
  • The speed of light is about 3.00 × 105 km/s. It takes approximately 1.28 seconds for light reflected from the
    14·1 answer
  • (6). A car travels in a straight line from city A to city B at a speed of 60kmh-1
    7·1 answer
  • A Young's double-slit experiment is performed using light that has a wavelength of 631 nm. The separation between the slits is 5
    7·1 answer
  • How can I find the vertical velocity
    15·1 answer
  • If the displacement of a horizontal mass-spring system was doubled, the elastic potential energy in the system would change by a
    8·1 answer
  • Enrique is given information about a satellite orbiting Earth. R = 3. 8 Ă— 108 m T = 18 days In order to calculate the tangentia
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!