The compound crystallizes in the aluminium trifluoride motif. Each fluoride is a doubly bridging ligand. The cobalt centers are octahedral.
CoF3 decomposes upon contact with water to give oxygen:
4 CoF3 + 2 H2O → 4 HF + 4 CoF2 + O2
It reacts with fluoride salts to give the anion [CoF6]3−, which is also features high-spin, octahedral cobalt(III) center.
Answer:
The coefficient of Ca(OH)2 is 1
Explanation:
Step 1: unbalanced equation
Ca(OH)2 + HNO3 → Ca(NO3)2 + H2O
Step 2: Balancing the equation
On the right side we have 2x N (in Ca(NO3)2 ) and 1x N on the left side (in HNO3). To balance the amount of N on both sides, we have to multiply HNO3 by 2.
Ca(OH)2 + 2HNO3 → Ca(NO3)2 + H2O
On the left side we have 4x H (2xH in Ca(OH)2 and 2x H in HNO3), on the right side we have 2x H (in H2O). To balance the amount of H on both sides, we have to multiply H2O on the right side, by 2.
Now the equationis balanced.
Ca(OH)2 + 2HNO3 = Ca(NO3)2 + 2H2O
The coefficient of Ca(OH)2 is 1
N = given mass/ molar mass.
n = number of moles
given mass = 2.47 g
molar mass = 197 g/mol
n = 2.47 / 197
n = 0.01253 moles.
I'm sure you wanted to ask more than this. Just put some comments in. I can do the same.
Methane, CH4, would have the lowest boiling point among the three since it has the lowest number of carbon and has no functional groups. Methanol would have the highest boiling point since it has a functional group which contains hydrogen bonding which much stronger than the one in CH3Cl. Hope this helps.<span />