Answer:
<em>The total potential (magnitude only) is 11045.45 V</em>
Explanation:
<u>Electric Potential
</u>
The total electric potential at location A is the sum of all four individual potentials produced by the charges, including the sign since the potential is a scalar magnitude that can be computed by

Where k is the Coulomb's constant, q is the charge, and r is the distance from the charge. Let's find the potential of the rightmost charge:

The potential of the leftmost charge is exactly the same as the above because the charges and distances are identical

The potential of the topmost charge is almost equal to the above computed, is only different in the sign:

The bottom charge has double distance and the same charge, thus the potential's magnitude is half the others':

The total electric potential in A is


The total potential (magnitude only) is 11045.45 V
Answer:
Required rate of return = 18.5 %
Explanation:
given,
rate of inflection = 4 %
risk free rate = 3 %
market risk premium = 5 %
firm has a beta = 2.30
rate of return has averaged 15.0% over the last 5 years
now,
Nominal risk free rate = risk free rate + inflation
= 3% + 4%
= 7%
Required rate of return = Nominal risk free rate + β (RPM)
= 7% + 2.3 x 5.0%
Required rate of return = 18.5 %
Answer: The color of an image is identical to the color of the object forming the image. When you look at yourself in a mirror, the color of your eyes doesn’t change. The fact that the color is the same is evidence that the frequency of light doesn’t change upon reflection. 2.
Hope this helps!!
If,

then, with 3x time t, (suppose, new distance is h)




Therefore, new distance h will be 9 times bigger than distance d.
answer: c
Answer:
Explanation:
a is the acceleration
μ is the coefficient of friction
Acceleration of the object is given by

Velocity at the bottom

after travelling 4m , its velocity becomes 0



Coefficient of kinetic friction
μ = F/N

Therefore, the Coefficient of kinetic friction is 0.31