Answer:
The magnitude of the magnetic torque on the coil is 1.98 A.m²
Explanation:
Magnitude of magnetic torque in a flat circular coil is given as;
τ = NIASinθ
where;
N is the number of turns of the coil
I is the current in the coil
A is the area of the coil
θ is the angle of inclination of the coil and magnetic field
Given'
Number of turns, N = 200
Current, I = 7.0 A
Angle of inclination, θ = 30°
Diameter, d = 6 cm = 0.06 m
A = πd²/4 = π(0.06)²/4 = 0.002828 m²
τ = NIASinθ
τ = 200 x 7 x 0.002828 x Sin30
τ = 1.98 A.m²
Therefore, the magnitude of the magnetic torque on the coil is 1.98 A.m²
Answer:
The acceleration of a 1000 kg car subject to a 550 N net force = 0.55 m/s^2
Explanation:
Given:
F = 550 N
m = 1000 kg
To Find:
a = ?
Solution:
So by the equation by Newton's 2nd Law of Motion,
F = m x a
550 N = 1000 kg x a
a = 550 N/ 1000 kg
a = 0.55 m/s^2
Therefore,
The acceleration of a 1000 kg car subject to a 550 N net force = 0.55 m/s^2
PLEASE MARK ME AS BRAINLIEST!!!
Stars are made of very hot gas. This gas is mostly hydrogen and helium, which are the two lightest elements. Stars shine by burning hydrogen into helium in their cores, and later in their lives create heavier elements.
P1v1/t1 = p2v2/t2
p1=p2, v1=.2, t1=333, t2=533
we can find v2 from this
be aware, temperature must be in Kelvin.