1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shepuryov [24]
2 years ago
13

The complete stress distribution obtained by superposing the stresses produced by an axial force and a bending moment is correct

ly represented by _______.
Engineering
1 answer:
Zanzabum2 years ago
7 0

The complete stress distribution obtained by superposing the stresses produced by an axial force and a bending moment is correctly represented by F/A - (My)/(Iz).

<h3>What is the distribution of pressure at some stage in bending?</h3>

Compressive and tensile forces expand withinside the path of the beam axis beneath neath bending loads. These forces set off stresses at the beam. The most compressive pressure is observed on the uppermost fringe of the beam whilst the most tensile pressure is positioned on the decrease fringe of the beam.

The bending pressure is computed for the rail through the equation Sb = Mc/I, wherein Sb is the bending pressure in kilos in keeping with rectangular inch, M is the most bending second in pound-inches, I is the instant of inertia of the rail in (inches)4, and c is the space in inches from the bottom of rail to its impartial axis.

Read more about beam;

brainly.com/question/25329636

#SPJ1

You might be interested in
A cartridge electrical heater is shaped as a cylinder of length L=200mm and outer diameter D=20 mm. Under normal operating condi
lara31 [8.8K]

Answer:

T(water)=50.32℃

T(air)=3052.6℃

Explanation:

Hello!

To solve this problem we must use the equation that defines the transfer of heat by convection, which consists of the transport of heat through fluids in this case water and air.

The equation is as follows!

Q=ha(Ts-T\alpha )

Q = heat

h = heat transfer coefficient

Ts = surface temperature

T = fluid temperature

a = heat transfer area

The surface area of ​​a cylinder is calculated as follows

a=\pi D(\frac{D}{2} +L)

Where

D=diameter=20mm=0.02m

L=leght=200mm)0.2m

solving

a=\pi (0.02)(\frac{0.02}{2} +0.2)=0.01319m^2

For water

Q=2Kw=2000W

h=5000W/m2K

a=0.01319m^2

Tα=20C

Q=ha(Ts-T\alpha )

solving for ts

Ts=T\alpha +\frac{Q}{ha}

Ts=20+\frac{2000}{(0.01319)(5000)} =50.32C

for air

Q=2Kw=2000W

h=50W/m2K

a=0.01319m^2

Tα=20C

Ts=20+\frac{2000}{(0.01319)(50)}=3052.6C

3 0
3 years ago
Every two years or at recommendation by manufacturer.
9966 [12]

Answer:

Manufacturer’s Recommendations means the instructions, procedures, and recommendations which are issued by the manufacturer of any equipment used at the Facility relating to the operation, maintenance, or repair of such equipment, and any revisions or updates thereto from time to time issued by the manufacturer.

Manufacturer’s Recommendations means the instructions, procedures and recommendations which are issued by any manufacturer of the Equipment relating to the operation, maintenance and repair of the Equipment and any revisions to such instructions, procedures and recommendations agreed to by any manufacturer of the Equipment and which are valid at the time such operation, repair and maintenance is being carried out.

Manufacturer’s Recommendations means the written instructions, procedures and recommendations which are issued by the original equipment manufacturer of any plant or equipment used at the Utility Plant relating to the operation, maintenance and repair of such plant or equipment and any revisions thereto issued by the manufacturer, which are valid and applicable at the time such operation, maintenance or repair is undertaken. Notwithstanding the above, Manufacturer’s Recommendations shall not include any instructions, procedures or recommendations of a manufacturer of any plant or equipment that the Owner and the Operator have agreed in writing to exclude from this definition or have agreed in writing should not be followed.

Explanation:

4 0
2 years ago
What kinds of problems or projects would a civil engineer work on?
lisov135 [29]

Answer:

simple projects bovonhztisgx

8 0
3 years ago
It has a piece of 1045 steel with the following dimensions, length of 80 cm, width of 30 cm, and a height of 15 cm. In this piec
Serggg [28]

Answer:

material remove in 3 min is 16790.4 mm³/s

Explanation:

given data

length L = 80 cm = 800 mm

width W = 30 cm

height H = 15 cm

make grove length = 80 cm

width = 8 cm

depth = 10 cm

mill toll diameter = 4 mm

axial cutting depth = 20 mm

to find out

How much material removed in 3 minutes

solution

first we find time taken for length of advance that is

time = \frac{length}{advance}

here advance is given as 0.001166 mts / sec

so  time = \frac{800}}{0.001166*1000}

time = 686.106 seconds

now we find material remove rate that is

remove rate = mill toll rate × axial cutting depth × advance

remove rate = 4 × 20×0.001166 ×1000

remove rate = 93.28 mm³/s

so

material remove in 3 minute = 3 × 60 = 180 sec

so material remove in 3 min = 180 × 93.28

material remove in 3 min is 16790.4 mm³/s

7 0
3 years ago
A particle is emitted from a smoke stack with diameter of 0.05 mm. In order to determine how far downstream it travels it is imp
Nikolay [14]

Answer: downward velocity = 6.9×10^-4 cm/s

Explanation: Given that the

Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m

Where radius r = 2.5 × 10^-5 m

Density = 1200 kg/m^3

Area of a sphere = 4πr^2

A = 4 × π× (2.5 × 10^-5)^2

A = 7.8 × 10^-9 m^2

Volume V = 4/3πr^3

V = 4/3 × π × (2.5 × 10^-5)^3

V = 6.5 × 10^-14 m^3

Since density = mass/ volume

Make mass the subject of formula

Mass = density × volume

Mass = 1200 × 6.5 × 10^-14

Mass M = 7.9 × 10^-11 kg

Using the formula

V = sqrt( 2Mg/ pCA)

Where

g = 9.81 m/s^2

M = mass = 7.9 × 10^-11 kg

p = density = 1200 kg/m3

C = drag coefficient = 24

A = area = 7.8 × 10^-9m^2

V = terminal velocity

Substitute all the parameters into the formula

V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]

V = sqrt[ 1.54 × 10^-9/2.25×10-4]

V = 6.9×10^-6 m/s

V = 6.9 × 10^-4 cm/s

6 0
3 years ago
Other questions:
  • A 55-μF capacitor has energy ω (t) = 10 cos2 377t J and consider a positive v(t). Determine the current through the capacitor.
    12·1 answer
  • In a reversible process both the system and surrondings can be returned to their initial states. a)-True b)-False
    14·1 answer
  • Water is pumped from one large reservoir to another at a higher elevation. If the flow rate is 2.5 ft3 /s and the pump delivers
    12·1 answer
  • Which of the following statements about pitot-static systems is FALSE? a). A pitot probe measures the Total Pressure of the free
    10·1 answer
  • What engine does the mercedes 500e have​
    5·1 answer
  • Two engineers are discussing the various merits of hydroelectricity. Engineer A says that tidal barrage systems can generate ele
    6·1 answer
  • Lets try to get to 100 sub before charismas day <br> Jordan Gracia 32 sub and 5 videos
    13·2 answers
  • An organization sets its standards for quality according to the best product it can produce.
    11·2 answers
  • ما سبب نزول الاية
    6·1 answer
  • A common boundary-crossing problem for engineers is when their home country' values come into sharp contrast with the host count
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!