1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex777 [14]
3 years ago
11

A simple undamped spring-mass system is set into motion from rest by giving it an initial velocity of 100 mm/s. It oscillates wi

th a maximum amplitude of 10 mm. What is its natural frequency?
Engineering
1 answer:
____ [38]3 years ago
6 0

Answer:

f=1.59 Hz

Explanation:

Given that

Simple undamped system means ,system does not consists any damper.If system consists damper then it is damped spring mass system.

Velocity = 100 mm/s

Maximum amplitude = 10 mm

We know that for a simple undamped system spring mass system

V_{max}=\omega A

now by putting the values

V_{max}=\omega A

100 = ω x 10

ω = 10 rad/s

We also know that

ω=2π f

10 = 2 x π x f

f=1.59 Hz

So the natural frequency will be f=1.59 Hz.

You might be interested in
What entrepreneurial activities do you know?are you capable of doing entrepreneurial activities
kherson [118]

Answer:

.,m

Explanation:

.,m

5 0
3 years ago
Consider a modification of the air-standard Otto cycle in which the isentropic compression and expansion processes are each repl
Ulleksa [173]

Answer:

The answers to the question are

(1) Process 1 to 2

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

(2) Process 2 to 3

W = 0

Q = 1135.376 kJ/kg

(3) Process 3 to 4

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

(4) Process 4 to 3

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency = 49.9 %

(c) The mean effective pressure is 9.44 bar

Explanation:

(a) Volume compression ratio \frac{v_1}{v_2}  = 10

Initial pressure p₁ = 1 bar

Initial temperature, T₁ = 310 K

cp = 1.005 kJ/kg⋅K

Temperature T₃ = 2200 K from the isentropic chart of the Otto cycle

For a polytropic process we have

\frac{p_1}{p_2}  = (\frac{v_2}{v_1} )^n Therefore p₂ = p₁ ÷ (\frac{v_2}{v_1} )^n = (1 bar) ÷ (\frac{1}{10} )^{1.3} = 19.953 bar

Similarly for a polytropic process we have

\frac{T_1}{T_2}  = (\frac{v_2}{v_1} )^{n-1} or T₂ = T₁ ÷ (\frac{v_2}{v_1} )^{n-1} = \frac{310}{0.1^{0.3}} = 618.531 K

The molar mass of air is 28.9628 g/mol.

Therefore R = \frac{8.3145}{28.9628} = 0.287 kJ/kg⋅K

cp = 1.005 kJ/kg⋅K Therefore cv = cp - R =  1.005- 0.287 = 0.718 kJ/kg⋅K

1). For process 1 to 2 which is polytropic process we have

W = \frac{R(T_2-T_1)}{n-1} = \frac{0.287(618.531-310)}{1.3 - 1}= 295.16 kJ/kg

Q =(\frac{n-\gamma}{\gamma - 1} )W = (\frac{1.3-1.4}{1.4-1} ) 295.16 kJ/kg = -73.79 kJ/kg

W = 295.16 kJ/kg

Q = -73.79 kJ/kg

2). For process 2 to 3 which is reversible constant volume heating we have

W = 0 and Q = cv×(T₃ - T₂) = 0.718× (2200-618.531) = 1135.376 kJ/kg

W = 0

Q = 1135.376 kJ/kg

3). For process 3 to 4 which is polytropic process we have

W = \frac{R(T_4-T_3)}{n-1} = Where T₄ is given by  \frac{T_4}{T_3}  = (\frac{v_3}{v_4} )^{n-1} or T₄ = T₃ ×0.1^{0.3}

= 2200 ×0.1^{0.3}  T₄ = 1102.611 K

W =  \frac{0.287(1102.611-2200)}{1.3 - 1}= -1049.835 kJ/kg

and Q = 262.459 kJ/kg

W = -1049.835 kJ/kg

Q = 262.459 kJ/kg

4). For process 4 to 1 which is reversible constant volume cooling we have

W = 0 and Q = cv×(T₁ - T₄) = 0.718×(310 - 1102.611) = -569.09 kJ/kg

W=0

Q = -569.09 kJ/kg

(b) The thermal efficiency is given by

\eta = 1-\frac{T_4-T_1}{T_3-T_2} =1-\frac{1102.611-310}{2200-618.531} = 0.499 or 49.9 % Efficient

(c) The mean effective pressure is given by

p_{m}  = \frac{p_1r[(r^{n-1}-1)(r_p-1)]}{ (n-1)(r-1)}  where r = compression ratio and r_p = \frac{p_3}{p_2}

However p₃ = \frac{p_2T_3}{T_2} =\frac{(19.953)(2200)}{618.531} =70.97 atm

r_p = \frac{p_3}{p_2} = \frac{70.97}{19.953}  = 3.56

Therefore p_m =\frac{1*10*[(10^{0.3}-1)(3.56-1)]}{0.3*9} = 9.44 bar

Please find attached generalized diagrams of the Otto cycle

8 0
3 years ago
3. When starting an automatic transmission
Alexxandr [17]

Answer:

It should be in Park or Neutral.

Explanation:

4 0
4 years ago
A 1 m wide continuous footing is designed to support an axial column load of 250 kN per meter of wall length. The footing is pla
creativ13 [48]

Answer:

correct option is (A) 0.5

Explanation:

given data

axial column load = 250 kN per meter

footing placed =  0.5 m

cohesion = 25 kPa

internal friction angle =  5°

solution

we know angle of internal friction is 5° that is near to 0°

so it means the soil is almost cohesive soil.

and for  a pure cohesive soil

N_{\gamma } = 0

and we know formula for N_{\gamma } is

N_{\gamma } = (Nq - 1 ) × tan(Ф)   ..................1

so here Ф is very less  N_{\gamma } should be nearest to zero

and its value can be 0.5

so correct option is (A) 0.5

7 0
3 years ago
What are some "vital signs" that we consider to tell us about the economy?
Wittaler [7]

Explanation:

if there is a deficit or a surplus

if the budget is good

7 0
3 years ago
Read 2 more answers
Other questions:
  • How to build a laser pointer?
    12·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • Compute the electrical resistivity of a cylindrical silicon specimen 7.0 mm (0.28 in.) diameter and 57 mm (2.25 in.) in length i
    9·1 answer
  • Suppose we want to determine how many of the bits in a twelve-bit unsigned number are equal to zero. Implement the simplest circ
    14·1 answer
  • TP-6 What should you do when fueling an outboard boat with a portable tank?
    12·1 answer
  • The _____ plane is the plane in which the side of an object appears in
    12·1 answer
  • Witch one is cuter compared to ur opinion calico kitten or grey?​
    5·1 answer
  • I really need help with my last topic,Hazard communication,if anyone can help me as soon as possible,that could be my Christmas
    12·1 answer
  • 9
    15·1 answer
  • Dampness or moisture introduces ____ into the weld, which causes cracking when some metals are welded.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!