1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
3 years ago
8

Explain your answer. What parts of your hypothesis were strong correct? What parts were weak?

Physics
1 answer:
Anastaziya [24]3 years ago
5 0

This question is from quizlet.

So better check this question!

You might be interested in
A bicycle rider has a speed of 19.0 m/s at a height of 55.0 m above sea level when he begins coasting down hill. The mass of the
lukranit [14]

Answer:

The mechanical energy of the rider at any height will be 6.34 × 10⁴ J.

Explanation:

Hi there!

The mechanical energy of the rider is calculated as the sum of the gravitational potential energy plus the kinetic energy. Since there are no dissipative forces (like friction), the mechanical energy of the rider at a height of 55.0 m above the sea level will be the same at a height of 25.0 m (or at any height), because the loss in potential energy will be compensated by a gain in kinetic energy, according to the law of conservation of energy.

Then, calculating the potential and kinetic energy at 55.0 m and 19 m/s, we can obtain the mechanical energy that will be constant:

Mechanical energy = PE + KE

Where:

PE = potential energy.

KE = kinetic energy.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity.

h = height.

Then, the potential energy of the rider will be:

PE = 88.0 kg · 9.81 m/s² · 55.0 m = 4.75 × 10⁴ J

The kinetic energy is calculated as follows:

KE = 1/2 · m · v²

Where "m" is the mass of the object and "v" its velocity. Then:

KE = 1/2 · 88.0 kg · (19.0 m/s)²

KE = 1.59 × 10⁴ J

The mechanical energy of the rider will be:

Mechanical energy = PE + KE = 4.75 × 10⁴ J + 1.59 × 10⁴ J = 6.34 × 10⁴ J

This mechanical energy is constant because when the rider coast down the hill, its potential energy is being converted into kinetic energy, so that the sum of potential energy plus kinetic energy remains constant.

5 0
3 years ago
A 20kg object acceleration by a force of 200N with coefficient of kineticfriction is 0.4 what is acceleration of the object?​
Schach [20]

Answer:

<u>Given</u><em> </em><em>-</em><em> </em><u>M</u><u> </u><u>=</u><u> </u>20 kg

k = 0.4

F = 200 N

<u>To </u><u>find </u><u>-</u><u> </u> acceleration

<u>Solution </u><u>-</u><u> </u>

F= kMA

200 = 0.4 * 20 * acceleration

200 = 8 * a

a = 8/200

a = 0.04 m s²

<h3>a = 0.04 m s²</h3>
5 0
2 years ago
0.0884 moles of a diatomic gas
Sloan [31]

Answer:

W = - 118.24 J (negative sign shows that work is done on piston)

Explanation:

First, we find the change in internal energy of the diatomic gas by using the following formula:

\Delta\ U = nC_{v}\Delta\ T

where,

ΔU = Change in internal energy of gas = ?

n = no. of moles of gas = 0.0884 mole

Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)

Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K

ΔT = Rise in Temperature = 18.8 K

Therefore,

\Delta\ U = (0.0884\ moles)(20.785\ J/mol.K)(18.8\ K)\\\Delta\ U = 34.54\ J

Now, we can apply First Law of Thermodynamics as follows:

\Delta\ Q = \Delta\ U + W

where,

ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)

W = Work done = ?

Therefore,

-83.7\ J = 34.54\ J + W\\W = -83.7\ J - 34.54\ J\\

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>

7 0
3 years ago
Read 2 more answers
The atmosphere of Jupiter is essentially made up of hydrogen, H2. For H2, the specific gas constant is 4157 J/(kg K). The accele
Alenkinab [10]

Answer:

h=17357.9m

Explanation:

The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.

To calculate this, you need to use the barometric formula:

P=P_0e^{-\frac{Mg}{RT}h}

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.

Furthermore, the specific gas constant is defined by:

R_{H_2}=\frac{R}{M}

Therefore yo can write the barometric formula as:

P=P_0e^{-\frac{g}{R_{H_2}T}h}

at the surface of the planet (h =0) the pressure is P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}

applying to the previuos equation:

\frac{P_0}{2} =P_0e^{-\frac{g}{R_{H_2}T}h}

solving for h:

h=17357.9m

3 0
3 years ago
Which of the following is a source of direct electric current?
Svetllana [295]
Hi , the answer is D , battery.
5 0
3 years ago
Read 2 more answers
Other questions:
  • a 65 kg skater at rest on a frictionless rink throws a 2 kg ball, giving the ball a velocity of 7 m/s. What is the velocity of t
    5·1 answer
  • A building made with a steel structure is 565 m high on a winter day when the temperature is 0◦F. How much taller is the buildin
    13·1 answer
  • A 2,000-kg test car, traveling 60 m/s hits a brick wall. Using motion pictures, the time involved is determined to be 0.050 s. W
    13·1 answer
  • The atomic number of beryllium (Be) is 4, and the atomic number of barium (Ba) is 56. Which comparison is best supported by this
    5·2 answers
  • If a vehicle is moving at 45m/s initially 36m/s after 2.0s and 27m/s after 4.0s at what time will it come to a stop
    10·1 answer
  • Why do electric charges that move through a magnetic field produce an electric current? A. The magnetic field exerts a force on
    9·2 answers
  • Ipaliwanag ang paggalang
    7·1 answer
  • Fast, irregular, and low-amplitude electrical activity corresponds to
    15·1 answer
  • a man carries a hand bag by hanging on his hand and moves horizontally where the bag does not move up or down. What is the work
    8·1 answer
  • Discuss one social problem in the world today. What do you think should be done to help solve this social problem?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!