Answer:
displacement at 45 s = 30
65 s = 50
So the average speed over the interval from 45 s to 65 s is
(50 - 30) cm / 20 s = 1 cm / sec
As a check an average speed of 1 cm / sec for 20 sec will produce a
displacement of 1 cm / sec * 20 sec = 20 cm or from 30 to 50 cm
The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
<h3>What is the time after being ejected is the boulder moving at a speed 20.7 m/s upward?</h3>
The motion of the boulder is a uniformly accelerated motion, with constant acceleration
a = g = -9.8 
downward (acceleration due to gravity).
By using Suvat equation:
v = u + at
where: v is the velocity at time t
u = 40.0 m/s is the initial velocity
a = g = -9.8
is the acceleration
To find the time t at which the velocity is v = 20.7 m/s
Therefore,

The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
The complete question is:
A large boulder is ejected vertically upward from a volcano with an initial speed of 40.0 m/s. Ignore air resistance. At what time after being ejected is the boulder moving at 20.7 m/s upward?
To learn more about uniformly accelerated motion refer to:
brainly.com/question/14669575
#SPJ4
Answer:
The value is 
Explanation:
From the question we are told that
The time taken to travel to the planet from earth is 
The time to be spent on the ship is
Generally speed can be obtained using the mathematical relation represented below

The 2 in the equation show that the trip is a round trip i.e going and coming back
=> 
=> 
D = distance between the cars at the start of time = 680 km
v₁ = speed of one car
v₂ = speed of other car = v₁ - 10
t = time taken to meet = 4 h
distance traveled by one car in time "t" + distance traveled by other car in time "t" = D
v₁ t + v₂ t = D
(v₁ + v₂) t = D
inserting the values
(v₁ + v₁ - 10) (4) = 680
v₁ = 90 km/h
rate of slower car is given as
v₂ = v₁ - 10
v₂ = 90 - 10 = 80 km/h
The heart rate will likely decrease. As the cardiac muscle, or heart, gets stronger, it takes less effort to pump more blood. As a result, the heart will probably beat less, decreasing the heart rate. This is why athletes often have lower heart rates than the average person.