The answer for this would be B!!
Answer:
Image distance is -52.5 cm
Image is virtual and forms on the same side of the lens and upright image is formed.
Explanation:
u = Object distance
v = Image distance
f = Focal length = 35
m = Magnification = 2.5

Lens equation


Image distance is -52.5 cm
Image is virtual and forms on the same side of the lens and upright image is formed.
Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
1,000 milligrams = 1 gram
2,000 milligrams = 2 grams
3,000 milligrams = 3 grams
4,000 milligrams = 4 grams
The thin atmosphere of Mars is thought to be due to the planet's lack of a magnetic field, which has allowed the Solar wind to blow away much of the gas the planet once had. Venus, despite still having a thick atmosphere of CO2, surprisingly has a similar problem