Answer:
Fg = 98.1 [N]; N = 98.1 [N]; Ff = 39.24 [N]; a = 2.076[m/^2]
Explanation:
To solve this problem, we must make a free body diagram and interpret each of the forces acting on the box. In the attached diagram we can find the free body diagram.
The gravitational force is equal to:
Fg = (10 * 9.81) = 98.1 [N]
Now by summing forces on the Y axis equal to zero, we can find the normal force exerted by the surface.
N - Fg = 0
N = Fg
N = 98.1 [N]
The friction force is defined as the product of normal force by the coefficient of friction.
Ff = N * μ
Ff = 98.1 * 0.4
Ff = 39.24 [N]
By the sum forces on the x-axis equal to the product of mass by acceleration (newton's second law), we can find the value of acceleration.
60 - Ff = m * a
60 - 39.24 = 10 * a
a = 2.076[m/^2]
Answer
4.8 N
If the box is moving with a constant velocity, then we can say that the system is in equilibrium. This is because if the external force (F->) was greater than other forces the box would be accelerating. This tells us that this force (F->) is just enough to overcome friction and so it must be equal to 4.8 N.
The normal force has no effect to the horizontal velocities or forces. It is equal to -Weight. That is -74 N. The negative sign shows that the force is in opposite direction.
Answer:
M = 222 fringes
Explanation:
given
λ = 559 n m = 559 × 10⁻⁹ m
radius = 0.026 mm = 0.026 ×10⁻³ m
length of the glass plate = 22.1 ×10⁻² m
using relation


= 221.79
= 221 (approx.)
hence no of bright fringe
M = m + 1
= 221 +1
M = 222 fringes
The correct answer is the last one:
A and C are different elements, while D is an isotope of C.
In fact, A and C are different elements, because they have a different number of protons in the nucleus (A has 3 protons, while C has 4 protons). Instead, D and C are the same element (they both have 4 protons in the nucleus), but they are different isotopes since they have a different number of neutrons (D has 4 neutrons while C has 3 neutrons)
Answer:
The atomic number 26(iron) is the threshold value below which the fusion might occur.
Explanation:
Nuclear fusion is a reaction in which two or more nuclei are combined to form one or more different atomic nuclei and subatomic particles.
Energy released in a fusion reaction is because of a key feature of nuclear matter called the binding energy which is a measure of the efficiency with which its constituent nucleons are bound together.
As we go up in atomic number, the energy released per nuclei goes down until it hits a minimum which is for atomic number 26 (iron) and fusion is not possible.