Answer:
I.D.K but the same measure they use to judge will be used to judge them
Explanation:
Answer:
dx/Dt x B . x =0
Explanation:
Let's calculate the work and the magnetic force, the expression for magnetic force is
F = qv x B
Bold indicate vector quantities, the expression for the job is
W = F. X
Let's replace in this equation
W = q v x B . X
The definition of speed is
v = dX / dt
With what work is left
W = q dX / dt x B . X
As we can see the vector product gives us a vector perpendicular to dX and its scalar product by X of zero
Second part
The speed a vector and although the magnitude is constant the change of direction implies a change in the speed.
Let's calculate the magnitudes of speed (speed)
F = qv B sin θ
F = ma
q v B sin θ = ma
a = qvB / m senT
This acceleration is perpendicular to the magnetic field and the velocity, so it does not change if magnitude but its direction, it is directed to the center of the circle.
| v | = q vB/m sin θ
Answer:
The child will take 5.952 seconds to travel from the top of the hill to the bottom.
Explanation:
Given that the child accelerates uniformly and that both initial (
) and final speeds (
), measured in meters per second, and acceleration (
), measured in meters per square second, are known, we proceed to use the following kinematic equation to determine the time taken to travel from the top of the hill to the bottom (
), measured in seconds, is:
(1)
If we know that
,
and
, then the time taken is:

The child will take 5.952 seconds to travel from the top of the hill to the bottom.
Answer:
The transverse displacement is
Explanation:
From the question we are told that
The generally equation for the mechanical wave is

The speed of the transverse wave is 
The amplitude of the transverse wave is 
The wavelength of the transverse wave is 
At t= 0.150s , x = 1.51 m
The angular frequency of the wave is mathematically represented as

Substituting values


The propagation constant k is mathematically represented as

Substituting values


Substituting values into the equation for mechanical waves
