1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
3 years ago
11

Stars on the left of the diagram above are (View the picture to see the diagram)

Physics
2 answers:
omeli [17]3 years ago
4 0

<em>D. Less luminous than those on the right []</em>

oksian1 [2.3K]3 years ago
4 0

Answer:

D. Less luminous than those on the right []

Hope this helped

Explanation:

You might be interested in
Two equally charged tiny spheres of mass 1.0 g are placed 2.0 cm apart. When released, they begin to accelerate away from each o
zhannawk [14.2K]

Answer:

The magnitude of the charge on each sphere is 0.135 μC

Explanation:

Given that,

Mass = 1.0

Distance = 2.0 cm

Acceleration = 414 m/s²

We need to calculate the magnitude of charge

Using newton's second law

F= ma

a=\dfrac{F}{m}

Put the value of F

a=\dfrac{kq^2}{mr^2}

Put the value into the formula

414=\dfrac{9\times10^{9}\times q^2}{1.0\times10^{-3}\times(2.0\times10^{-2})^2}

q^2=\dfrac{414\times1.0\times10^{-3}\times(2.0\times10^{-2})^2}{9\times10^{9}}

q^2=1.84\times10^{-14}

q=0.135\times10^{-6}\ C

q=0.135\ \mu C

Hence, The magnitude of the charge on each sphere is 0.135μC.

7 0
3 years ago
Read 2 more answers
Find the mass and center of mass of the solid E with the given density function ρ. E lies under the plane z = 3 + x + y and abov
makvit [3.9K]

Answer:

The mass of the solid is 16 units.

The center of mass of the solid lies at (0.6875, 0.3542, 2.021)

Work:

Density function: ρ(x, y, z) = 8

x-bounds: [0, 1], y-bounds: [0, x], z-bounds: [0, x+y+3]

The mass M of the solid is given by:

M = ∫∫∫ρ(dV) = ∫∫∫ρ(dx)(dy)(dz) = ∫∫∫8(dx)(dy)(dz)

First integrate with respect to z:

∫∫8z(dx)(dy), evaluate z from 0 to x+y+3

= ∫∫[8x+8y+24](dx)(dy)

Then integrate with respect to y:

∫[8xy+4y²+24y]dx, evaluate y from 0 to x

= ∫[8x²+4x²+24x]dx

Finally integrate with respect to x:

[8x³/3+4x³/3+12x²], evaluate x from 0 to 1

= 8/3+4/3+12

= 16

The mass of the solid is 16 units.

Now we have to find the center of mass of the solid which requires calculating the center of mass in the x, y, and z dimensions.

The z-coordinate of the center of mass Z is given by:

Z = (1/M)∫∫∫ρz(dV) = (1/16)∫∫∫8z(dx)(dy)(dz)

<em>Calculate the integral then divide the result by 16.</em>

First integrate with respect to z:

∫∫4z²(dx)(dy), evaluate z from 0 to x+y+3

= ∫∫[4(x+y+3)²](dx)(dy)

= ∫∫[4x²+24x+8xy+4y²+24y+36](dx)(dy)

Then integrate with respect to y:

∫[4x²y+24xy+4xy²+4y³/3+12y²+36y]dx, evaluate y from 0 to x

= ∫[28x³/3+36x²+36x]dx

Finally integrate with respect to x:

[7x⁴/3+12x³+18x²], evaluate x from 0 to 1

= 7/3+12+18

Z = (7/3+12+18)/16 = <u>2.021</u>

The y-coordinate of the center of mass Y is given by:

Y = (1/M)∫∫∫ρy(dV) = (1/16)∫∫∫8y(dx)(dy)(dz)

<em>Calculate the integral then divide the result by 16.</em>

First integrate with respect to z:

∫∫8yz(dx)(dy), evaluate z from 0 to x+y+3

= ∫∫[8xy+8y²+24y](dx)(dy)

Then integrate with respect to y:

∫[4xy²+8y³/3+12y²]dx, evaluate y from 0 to x

= ∫[20x³/3+12x²]dx

Finally integrate with respect to x:

[5x⁴/3+4x³], evaluate x from 0 to 1

= 5/3+4

Y = (5/3+4)/16 = <u>0.3542</u>

<u />

The x-coordinate of the center of mass X is given by:

X = (1/M)∫∫∫ρx(dV) = (1/16)∫∫∫8x(dx)(dy)(dz)

<em>Calculate the integral then divide the result by 16.</em>

First integrate with respect to z:

∫∫8xz(dx)(dy), evaluate z from 0 to x+y+3

= ∫∫[8x²+8xy+24x](dx)(dy)

Then integrate with respect to y:

∫[8x²y+4xy²+24xy]dx, evaluate y from 0 to x

= ∫[12x³+24x²]dx

Finally integrate with respect to x:

[3x⁴+8x³], evaluate x from 0 to 1

= 3+8 = 11

X = 11/16 = <u>0.6875</u>

<u />

The center of mass of the solid lies at (0.6875, 0.3542, 2.021)

4 0
3 years ago
. Two people are pushing a car of mass 2000 kg.
Viktor [21]

Answer:

two people who are not going to be able to make it to class today because of the day and then I will be there at the house and then we can go

5 0
4 years ago
Find the cost of excavating a space 84 ft long, 42 ft wide, and 9 ft deep at a cost of $39/yd3. (simplify your answer completely
m_a_m_a [10]

The cost of excavating a space of 84 ft long, 42 ft wide, and 9 ft deep is $45864

Information about the problem:

  • Space long= 84 ft
  • Space wide= 42 ft
  • Space deep= 9 ft
  • Cost by yard3 = $39/yd3
  • Total cost= ?

To solve this problem, we have to state the equation using the information of the problem:

Calculating the volume of the total space:

space volume = space long * space wide * space deep

space volume = 84 ft * 42 ft * 9 ft

space volume = 31752 ft3

By converting the volume from ft3 to yd3, we have:

31752 ft3 * (0,037037 yd3 / 1 ft3) = 1176 yd3

Calculating the cost of excavating the volume space:

Total cost = space volume * cost by yard3

Total cost = 1176 yd3 * $39/yd3

Total cost = $45864

<h3>What is volume?</h3>

It is the space occupied by a body, it is calculated by multiplying its dimensions, for example: length, height and width.

Learn more about volume at: brainly.com/question/12628341

#SPJ4

4 0
1 year ago
A steel ball and a piece of clay have equal mass. They are dropped from the same height on a horizontal steel platform. The ball
emmasim [6.3K]

Answer: The ball (option A)

Explanation: change in momentum is defined by the formulae m(v - u) where m = mass of object, v = final velocity and u = initial velocity.

For the ball, it hits the ground and bounces back with the same speed, that's final velocity equals initials (v = - u)

Change in momentum = m( -u- u) = m(-2u) = m(-2u) = -2mu

For the clay, it final velocity is zero since it sticks to the floor, hence (v =0)

m(v - u) = m(0 - u) = - mu.

-2mu (change in momentum from the ball) is greater than - mu ( change in momentum of clay)

6 0
3 years ago
Other questions:
  • A laser beam is incident on two slits with a separation of 0.215 mm, and a screen is placed 5.45 m from the slits. an interferen
    6·1 answer
  • In a science fiction novel two enemies, Bonzo and Ender, are fighting in outer spce. From stationary positions, they push agains
    5·1 answer
  • During its lifespan, what characteristics of the sun will change
    13·2 answers
  • Matter is needed to transfer thermal energy by
    6·1 answer
  • What type of industry might you expect to find on land near volcanoes
    5·1 answer
  • The pressure in a container will stay the same if you ——?
    6·1 answer
  • What would be the mass of an object that is moving at 5 m/s, with a total momentum of 1500 kg*m/s southeast?
    12·1 answer
  • What do you understand by family health?<br>​
    14·2 answers
  • Newton's 3rd law is also known as the<br> law of
    9·1 answer
  • A position versus time graph is shown:
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!