The answer of this question is D. All of the above
Acceleration happen when an obeject change its velocity. It has nothing to do with speed.
The huge misconception about acceleration is when we thought it only aply if we increase our speed ( in a sport match, sportcaster often describe acceleration as an increase in players speed)
slower, faster, right , left, it does not matter, as long as that object change its velocity, it accelerates
Answer:
C) 16.3 ml
Explanation:
Density is equal to the ratio between the mass of an object and its volume:

where
m is the mass
V is the volume
In our problem, we know:
- density of aluminium: 
- mass of the aluminium foil: 
So we can re-arrange the equation above and use these data to find the volume of the piece of aluminium foil:

Answer:
2a) x = 32 [mil/h]; 2b) t = 0.5[h]; 3a) t = 2.5 [h]; 3b) x = 185[mil]
Explanation:
2a)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 32 [\frac{mil}{h}] \\t=time = 1 [h]\\x=v*t\\x=32[\frac{mil}{h} ]*1[h]\\x=32[mil}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3Dvelocity%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%20%3D%2032%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%5D%20%5C%5Ct%3Dtime%20%3D%201%20%5Bh%5D%5C%5Cx%3Dv%2At%5C%5Cx%3D32%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%2A1%5Bh%5D%5C%5Cx%3D32%5Bmil%7D)
2b)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{420}{840}\\ t=0.5[h]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Ct%3D%5Cfrac%7Bx%7D%7Bv%7D%20%5C%5Ct%3D%5Cfrac%7B420%7D%7B840%7D%5C%5C%20t%3D0.5%5Bh%5D)
3a)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{35}{14}\\ t=2.5[h]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Ct%3D%5Cfrac%7Bx%7D%7Bv%7D%20%5C%5Ct%3D%5Cfrac%7B35%7D%7B14%7D%5C%5C%20t%3D2.5%5Bh%5D)
3b)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 74 [\frac{mil}{h}] \\t=time = 2.5 [h]\\x=v*t\\x=74[\frac{mil}{h} ]*2.5[h]\\x=185[mil}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3Dvelocity%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%20%3D%2074%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%5D%20%5C%5Ct%3Dtime%20%3D%202.5%20%5Bh%5D%5C%5Cx%3Dv%2At%5C%5Cx%3D74%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%2A2.5%5Bh%5D%5C%5Cx%3D185%5Bmil%7D)
Answer:
<u>We are given: </u>
initial velocity (u) = 0 m/s
final velocity (v) = 10 m/s
displacement (s) = 20 m
acceleration (a) = a m/s/s
<u>Solving for 'a'</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(10)² - (0)² = 2(a)(20)
100 = 40a
a = 100 / 40
a = 2.5 m/s²
<span>Viscosity, the more a fluid resists flow, the more viscous the flow. For example, honey is a very viscous fluid, while water is not as viscous. Hope this helps(:</span>