are usually different from the property. only mixture takes the similar property of its constituent element
Force between two charges =
( 1/4πε₀ ) · (Charge #1) · (Charge #2) / (Distance between them)²
in the direction away from each other.
In other words, if the force is positive, the charges are repelling.
If the force is negative, the charges are attracting.
<span>At an instant when the displacement is equal to a/2,
Potential energy U = 1/2ka(square) where a is displacement.
when a= a/2
U = 1/4ka(square)
U = E/4
Potential Energy = 1/4 Total energy</span>
Answer:
L₀ = L_f , K_f < K₀
Explanation:
For this exercise we start as the angular momentum, with the friction force they are negligible and if we define the system as formed by the disk and the clay sphere, the forces during the collision are internal and therefore the angular momentum is conserved.
This means that the angular momentum before and after the collision changes.
Initial instant. Before the crash
L₀ = I₀ w₀
Final moment. Right after the crash
L_f = (I₀ + mr²) w
we treat the clay sphere as a point particle
how the angular momentum is conserved
L₀ = L_f
I₀ w₀ = (I₀ + mr²) w
w =
w₀
having the angular velocities we can calculate the kinetic energy
starting point. Before the crash
K₀ = ½ I₀ w₀²
final point. After the crash
K_f = ½ (I₀ + mr²) w²
sustitute
K_f = ½ (I₀ + mr²) (
w₀)²
Kf = ½
w₀²
we look for the relationship between the kinetic energy
= 

K_f < K₀
we see that the kinetic energy is not constant in the process, this implies that part of the energy is transformed into potential energy during the collision
Answer:
A) T.
Explanation:
Kepler's third law states that the orbital period (T) of a satellite is related with the radius (R) and the mass of the object (M) it orbits:
So the orbital period is independent of the mass of the satellite, that means no matter the mass every satellite at a radius R around the earth have an orbital period A.