AnsweR Viciously comes from the adjective vicious, which originally meant "of the nature of vice, or wicked." The Latin root, vitiosus, means "faulty, defective, or corrupt."
Explanation:
The best answer would be
D. Int calculateCost(int count);
Answer:
43248 newtons.
Explanation:
Force = mass x accelerations and units of force are newtons which are given in the question.
here mass = 125 of air and 2.2 of fuel, total = 125+2.2=127.5kg/s and the velocity of the exhaust is 340m/s.
force = 340m/s * 127.5kg/s = 43248 newtons technically this is wrong (observe units) but i will expalin how i have taken acceleration as a velocity here and mass/unit time as simply mass.
see force is mass times acceleration or deceleration, here our velocity is not changing therefore it is constant 340m/s but if it were to change and become 0 in one second then there would be -340m/s^2 (note the units ) of deceleration and there would be force associated with it and that force is what i have calculated here. similarly there would be mass in flow rate of mass per second, which is also in that one second of time.
let's calculate error.
error = (actual-calculated)/actual. = (43248-60000)/43248= -38.734% less is ofcourse greater than 2%.
So the load cell is not reading correct to within 2% and it should read 43248newtons.
Answer:
critical clearing angle = 70.3°
Explanation:
Generator operating at = 50 Hz
power delivered = 1 pu
power transferable when there is a fault = 0.5 pu
power transferable before there is a fault = 2.0 pu
power transferable after fault clearance = 1.5 pu
using equal area criterion to determine the critical clearing angle
Attached is the power angle curve diagram and the remaining part of the solution.
The power angle curve is given as
= Pmax sinβ
therefore : 2sinβo = Pm
2sinβo = 1
sinβo = 0.5 pu
βo =
⁰
also ; 1.5sinβ1 = 1
sinβ1 = 1/1.5
β1 =
= 41.81⁰
∴ βmax = 180 - 41.81 = 138.19⁰
attached is the remaining solution
The critical clearing angle =
≈ 70.3⁰
Answer:
work=281.4KJ/kg
Power=4Kw
Explanation:
Hi!
To solve follow the steps below!
1. Find the density of the air at the entrance using the equation for ideal gases

where
P=pressure=120kPa
T=20C=293k
R= 0.287 kJ/(kg*K)=
gas constant ideal for air

2.find the mass flow by finding the product between the flow rate and the density
m=(density)(flow rate)
flow rate=10L/s=0.01m^3/s
m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s
3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow
Work
w=Cp(T1-T2)
Where
Cp= specific heat for air=1.005KJ/kgK
w=work
T1=inlet temperature=20C
T2=outlet temperature=300C
w=1.005(300-20)=281.4KJ/kg
Power
W=mw
W=(0.0143)(281.4KJ/kg)=4Kw