1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
3 years ago
9

Which is the required type of fire extinguisher for standard naval vessels

Engineering
1 answer:
Bess [88]3 years ago
3 0

Answer:

Mentioned below are the required types of fire extinguishers for standard naval vessels:

  1. Soda Acid Fire Extinguisher
  2. Water Extinguisher
  3. Foam Extinguisher – Chemical and Mechanical
  4. Carbon Dioxide Extinguisher
  5. Dry Powder Extinguisher

Explanation:

A fire extinguisher is a functioning fire insurance gadget used to douse or control little fires, regularly in crisis circumstances. It isn't planned for use on a wild fire, for example, one which has arrived at the roof, jeopardizes the client (i.e., no way out course, smoke, blast danger, and so on.), or in any case requires the mastery of a fire unit. Ordinarily, a fire extinguisher comprises of a hand-held barrel shaped weight vessel containing an operator that can be released to stifle a fire. Fire extinguishers made with non-round and hollow weight vessels likewise exist however are less normal.

A naval vessel is a military boat (or in some cases pontoon, contingent upon arrangement) utilized by a naval force. Naval boats are separated from non military personnel delivers by development and reason. By and large, naval boats are harm versatile and furnished with weapon frameworks, however combat hardware on troop transports is light or non-existent. Naval vessel is planned fundamentally for naval fighting are named warships, rather than help (assistant boats) or shipyard activities.

You might be interested in
Discuss the organizational system that you believe would be the most effective for the safety officer in a medium-sized (100-200
marin [14]

Answer:

A safety manager is a person who designs and maintains the safety elements at workplace. A balance should be required for production and the job in providing work environment. As a safety officer in a medium sized manufacturing facility the following organizational system can be designed and maintained:

  • Maintaining a workplace as per the guidelines by Occupational safety and health association. The rules and regulation should be such that maintains the manufacturing facilities.  
  • For warning to workers proper labelling, floor mapping, signs, posters should be used.  
  • Procurement and usage of safe tools.  
  • A guideline that describes safety standard and precautionary measures should be available to the workers. They should be aware about all the steps that needs to be taken in crisis.  
  • Ensuring that the workers have enough training safety and health or accident prevention.  
  • Identify and eliminate the hazardous elements from the workplace.  
  • A strict action should be taken against the worker in case of violation of rules and not adhering with guidelines.

3 0
3 years ago
Air at 26 kPa, 230 K, and 220 rn/s enters a turbojet engine in flight. The air mass flow rate is 25 kg/s. The compressor pressur
Paha777 [63]

Answer:

Explanation:

Answer:

Explanation:

Answer:  

Explanation:  

This is a little lengthy and tricky, but nevertheless i would give a step by step analysis to make this as simple as possible.  

(a). here we are asked to determine the Temperature and Pressure.  

Given that the properties of Air;  

ha = 230.02 KJ/Kg  

Ta = 230 K  

Pra = 0.5477  

From the energy balance equation for a diffuser;  

ha + Va²/2 = h₁ + V₁²/2  

h₁ = ha + Va²/2 (where V₁²/2 = 0)  

h₁ = 230.02 + 220²/2 ˣ 1/10³  

h₁ = 254.22 KJ/Kg  

⇒ now we obtain the properties of air at h₁ = 254.22 KJ/Kg  

from this we have;  

Pr₁ = 0.7329 + (0.8405 - 0.7329)[(254.22 - 250.05) / (260.09 - 250.05)]  

Pr₁ = 0.77759  

therefore T₁ = 254.15K  

P₁ = (Pr₁/Pra)Pa  

= 0.77759/0.5477 ˣ 26  

P₁ = 36.91 kPa  

now we calculate Pr₂  

Pr₂ = Pr₁ (P₂/P₁) = 0.77759 ˣ 11 = 8.55349  

⇒ now we obtain properties of air at  

Pr₂ = 8.55349 and h₂ = 505.387 KJ/Kg  

calculating the enthalpy of air at state 2  

ηc = h₁ - h₂ / h₁ - h₂  

0.85 = 254.22 - 505.387 / 254.22 - h₂  

h₂ = 549.71 KJ/Kg  

to obtain the properties of air at h₂ = 549.71 KJ/Kg  

T₂ = 545.15 K

⇒ to calculate the pressure of air at state 2

P₂/P₁ = 11

P₂ = 11 ˣ 36.913  

p₂ = 406.043 kPa

but pressure of air at state 3 is the same,

i.e. P₂ = P₃ = 406.043 kPa

P₃ = 406.043 kPa

To obtain the properties of air at  

T₃ = 1400 K, h₃ = 1515.42 kJ/Kg and Pr = 450.5

for cases of turbojet engine,

we have that work output from turbine = work input to the compressor

Wt = Wr

(h₃ - h₄) = (h₂ - h₁)

h₄ = h₃ - h₂ + h₁  

= 1515.42 - 549.71 + 254.22

h₄ = 1219.93 kJ/Kg

properties of air at h₄ = 1219.93 kJ/Kg

T₄ = 1140 + (1160 - 1140) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

T₄ = 1150.58 K

Pr₄ = 193.1 + (207.2 - 193.1) [(1219.93 - 1207.57) / (1230.92 - 1207.57)]

Pr₄ = 200.5636

Calculating the ideal enthalpy of the air at state 4;

Лr = h₃ - h₄ / h₃ - h₄*

0.9 = 1515.42 - 1219.93 / 1515.42 - h₄  

h₄* = 1187.09 kJ/Kg

now to obtain the properties of air at h₄⁻ = 1187.09 kJ/Kg

P₄* = 179.7 + (193.1 - 179.7) [(1187.09 -1184.28) / (1207.57 - 1184.28)]

P₄* = 181.316

P₄ = (Pr₄/Pr₃)P₃       i.e. 3-4 isentropic process

P₄ = 181.316/450.5 * 406.043

P₄ = 163.42 kPa

For the 4-5 process;

Pr₅ = (P₅/P₄)Pr₄

Pr₅ = 26/163.42 * 200.56 = 31.9095

to obtain the properties of air at Pr₅ = 31.9095

h₅= 724.04 + (734.82 - 724.04) [(31.9095 - 3038) / (32.02 - 30.38)]

h₅ = 734.09 KJ/Kg

T₅ = 710 + (720 - 710) [(31.9095 - 3038) / (32.02 - 30.38)]

T₅ = 719.32 K

(b) Now we are asked to calculate the rate of heat addition to the air passing through the combustor;

QH = m(h₃-h₂)

QH = 25(1515.42 - 549.71)

QH = 24142.75 kW

(c). To calculate the velocity at the nozzle exit;

we apply steady energy equation of a flow to nozzle

h₄ + V₄²/2 = h₅ + V₅²/2

h₄  + 0  = h₅₅ + V₅²/2

1219.9 ˣ 10³ = 734.09 ˣ 10³ + V₅²/2

therefore, V₅ = 985.74 m/s

cheers i hope this helps

6 0
4 years ago
A hypothetical metal alloy has a grain diameter of 2.4 × 10−2 mm. After a heat treatment at 575°C for 500 min, the grain diamete
Alex

Answer:

The time required is 10.078 hours or 605 min

Explanation:

The formula to apply here is ;

K=(d²-d²₀ )/t

where t is time in hours

d is grain diameter to be achieved after heating in mm

d₀ is the grain diameter before heating in mm

Given

d=5.5 × 10^-2 mm

d₀=2.4 × 10^-2 mm

t₁= 500 min = 500/60 =25/3 hrs

t₂=?

n=2.2

First find K

K=(d²-d²₀ )/t₁

K={ (5.1 × 10^-2 mm)²-(2.4 × 10−2 mm)² }/ 25/3

K=(0.051²-0.024²) ÷25/2

K=0.000243 mm²/h

Re-arrange equation for K ,to get the equation for d as;

d=√(d₀²+ Kt)  where now t=t₂

d=\sqrt{0.024^2+0.000243*t} \\\\0.055=\sqrt{0.024^2+0.000243t} \\\\0.055^2=0.024^2+0.000243t\\\\0.055^2-0.024^2=0.000243t\\\\0.002449=0.000243t\\\\0.002449/0.000243=t\\\\10.078=t\\\\t=605min

4 0
3 years ago
Explain three (3) modes of heat transfer in air conditioning system.
LenKa [72]

Answer:

1. Conduction

2. Convection

3. Radiation

Explanation:

The 3 modes of heat transfer i an air conditioning system:

1. Conduction:

The transfer of heat by conduction  takes place in solid and is when the conduction takes place as a result of direct contact in between the interacting material which transfer the heat energy from particle to particle thus conducting the heat through out the system.

2. Convection:

The other mode for the transfer of heat which takes place especially in fluids - gases and liquids is through the technique of convection in which the transfer of heat takes place by the circular motion of the atoms and molecules of the fluid which carries the heat energy and results in the distribution of the heated fluid in the entire system thus transferring all the heat energy in the entire system.

3. Radiation:

The third mode of heat transfer in the air conditioning system is through radiation. This method transfers the heat by making use of the electro-magnetic radiation in the infra red spectrum where the waves of the spectrum transfers the heat energy with the help of a medium or without any medium at all.

Thus making the radiation method of heat transfer as the only method out of the three methods which does not require the material medium for the transfer of heat energy.

4 0
3 years ago
Plssssssssssssss Alexi is writing a program which prompts users to enter their age. Which function should she use?
aleksandr82 [10.1K]

Answer:

int()

Explanation:

float() is using decimals, so that can't be it, like float(input( "how much does this cost?"))

print() is used to print something, not a user asking, like print("hello")

string() means like a whole, like string( I am good)

By elimination, int() is correct.

Hope this helps!

7 0
3 years ago
Other questions:
  • Once a design is final engineer needs a plan for product
    14·1 answer
  • HELP!
    8·1 answer
  • Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
    12·1 answer
  • Create a C language program that can be used to construct any arbitrary Deterministic Finite Automaton corresponding to the FDA
    6·1 answer
  • Do you understand entropy? Why the concept of entropy is difficult to engineering students?
    11·1 answer
  • Describe a pro and con of having a passenger in the car
    11·1 answer
  • What are the relevance of report writing
    9·1 answer
  • What is the moment that the wrench puts on the bolt?
    13·1 answer
  • What do you mean by overflow and underflow error in array?.
    11·1 answer
  • As you push a toggle bolt into a wall, the
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!