Do not forget that mass = <span>volume x density
</span>Mass of 1 cm^3 = Density[/tex]

Then eventually we can find <span>mass of 5 cm^3 : =
</span>

So the answer is D
<span>And that's it. I'm sure it will help.</span>
When a body strictly moves on a curve, it's velocity at a point is tangential to the curve at that point.
Centripetal acceleration is the acceleration that a body experiences by the virtue of change in it's tangential velocity. It is directed towards the centre and mathematically is v^2/R where v is the speed at the instant.
So, 18 = v^2/R
v^2 = 504
v = 6√14
A) position time graph for both is shown
here one of the graph is of lesser slope which means it is moving with less speed while other have larger slope which shows larger speed
At one point they intersects which is the point where they both will meet
B) Let the two will meet after time "t"
now we can say that
if they both will meet after time "t"
then the total distance moved by you and other person will be same as the distance between you and home
so it is given as



so they will meet after t = 6 min
so from position time graph we can see that two will meet after t = 6 min where at this position two graphs will intersect
Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m