Answer:

Explanation:
Given:
- mass of water,

- initial temperature of water,

- initial temperature of pan,

- mass of pan,

- mass of water evapourated,

- specific heat of water,

- specific heat of aluminium pan,

- latent heat of vapourization,

<u>Using the equation of heat:</u>
<em>Here, initially certain mass of water is vapourised first and then the remaining mass of water comes in thermal equilibrium with the pan.</em>



Because many fuels are fossil fuels they take millions of years to form and the known reserves are being used much faster than the new ones being made
Answer:
frequency = 5.52 * 10² Hz
Explanation:
the equation that relates velocity, frequency and wavelength is:
velocity = frequency * wavelength
We are given that:
velocity = 331 m/sec
wavelength = 0.6 m
Substitute with the givens in the equation to get the frequency as follows:
velocity = frequency * wavelength
331 = frequency * 0.6
frequency = 331 / 0.6
frequency = 5.52 * 10² Hz
Hope this helps :)
Answer:
It means that if force is constant, as mass is increased, acceleration decreases
Explanation:
Explanation:
It is given that,
Height above which the stone was thrown, h = 10 m
Initial velocity of the stone, u = 8 m/s
Angle above the horizontal, 
The horizontal component of velocity is, 
The vertical component of velocity is, 
Let t is the time of flight in vertical motion. The second equation of motion is :

t = 0.34 seconds
Let s is the range of the stone. It can be calculated as :


s = 2.46 meters
So, the range of the stone is 2.46 meters. Hence, this is the required solution.