1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
3 years ago
9

Which of Newton's laws explains why satellites need very little fuel to stay in oribit?

Physics
1 answer:
Angelina_Jolie [31]3 years ago
4 0

Sattelites don't need any fuel to stay in orbit. The applicable law is...."objects in motion tend to stay in motion". Having reached orbital velocity, any such object is essentially "falling" around the earth. Since there is no (or at least very little) friction in the vacuum of space, the object does not slow.... It simply continues.


Sattelites in "low" earth orbit do encounter some friction from the very thin upper atmosphere, and they will eventually "decay".

:)

You might be interested in
Can someone help<br> pls !
Gemiola [76]
A sort of electricity is a light bulb or a phone / computer charger. plants food water. the sun and rain . that’s what i’m guessing!
6 0
3 years ago
If earth had no atmosphere, would a falling object ever reach terminal velocity?
stepan [7]
No, because terminal velocity is when the acceleration of the Earth’s gravity is balanced by the air resistance of the atmosphere.
5 0
3 years ago
Explain what kind of heat transfer occurs when you burn yourself on a hot car seat in the summer.
liubo4ka [24]
Conduction is a mode of transfer of heat there
6 0
4 years ago
The student makes a single pile of the 500 sheets of paper. Which a metre rule, she measured the height of the pile. The height
Cerrena [4.2K]

Answer:  please see attached work.

Explanation:  please see attached work.  Assuming 500 sheets of paper = 20 lb.  (typicical value).  

6 0
3 years ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
Other questions:
  • Let’s consider several models of the Earth’s radiation properties. In each part, assume that the Earth's radiative output balanc
    5·1 answer
  • I need to write an acrostic poem on Globalisation and i need help. Does anyone have any ideas?
    15·1 answer
  • When two waves meet and result in resonance, how is the resultant wave different from the original waves?
    8·1 answer
  • What is the cost of conserved energy for compact fluorescent lighting?
    15·1 answer
  • The transfer of thermal energy between two bodies which are at different temperatures. The si unit for this is the joule. Genera
    12·2 answers
  • Column A is in the x-axis, and column B is on the y-axis. Which titles should replace A and B
    9·1 answer
  • Jenna flips a 10p coin four times. Here are her results:
    10·1 answer
  • A group of students designed the string drip system to water plants without irrigation, as shown in the image. They placed a jug
    9·2 answers
  • 77. The first law of motion applies to
    8·1 answer
  • Technology applies the principles of science to particular problems.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!