Answer:
atom(which contains protons, neutrons and electrons)
Answer:

Explanation:
a. Internal energy and the relative specific volume at
are determined from A-17:
.
The relative specific volume at
is calculated from the compression ratio:

#from this, the temperature and enthalpy at state 2,
can be determined using interpolations
and
. The specific volume at
can then be determined as:

Specific volume,
:

The pressures at
is:

.The thermal efficiency=> maximum temperature at
can be obtained from the expansion work at constant pressure during 

b.Relative SV and enthalpy at
are obtained for the given temperature with interpolation with data from A-17 :
Relative SV at
is

=
Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

Hence, the thermal efficiency is 0.563
c. The mean relative pressure is calculated from its standard definition:

Hence, the mean effective relative pressure is 674.95kPa
Answer:
a) Initial angular speed = 30 rad/s
b) Final angular speed = 70 rad/s
Explanation:
a) We have equation of motion s = ut + 0.5at²
Here s = 400 radians
t = 8 s
a = 5 rad/s²
Substituting
400 = u x 8 + 0.5 x 5 x 8²
u = 30 rad/s
Initial angular speed = 30 rad/s
b) We have equation of motion v = u + at
Here u = 30 rad/s
t = 8 s
a = 5 rad/s²
Substituting
v = 30 + 5 x 8 = 70 rad/s
Final angular speed = 70 rad/s
Answer: 1.22 m
Explanation:
The equation of motion in this situation is:
(1)
Where:
is the final height of the ball
is the initial height of the ball
is the vertical component of the initial velocity (assuming the ball was thrown vertically and there is no horizontal velocity)
is the time at which the ball lands
is the acceleration due gravity
So, with these conditions the equation is rewritten as:
(2)
(3)
Finally:

dissipation is the answer ;(