Basically, you want to take the integral of each interval and compare them. The two intervals with the same integral represent equal displacement of the particle. And since delta(x) is always 2, all you have to do is average the initial and final velocities of each interval and multiply by two to find total displacement.
Hope it helped.
Edit to show calculations:
2 * [ (0 + 10)/2 ] = 10 for interval AB
2 * [ (7 + 3)/2 ] = 10 for interval DE
What is the question? I think that you answered it yourself...
Answer:
128.21 m
Explanation:
The following data were obtained from the question:
Initial temperature (θ₁) = 4 °C
Final temperature (θ₂) = 43 °C
Change in length (ΔL) = 8.5 cm
Coefficient of linear expansion (α) = 17×10¯⁶ K¯¹)
Original length (L₁) =.?
The original length can be obtained as follow:
α = ΔL / L₁(θ₂ – θ₁)
17×10¯⁶ = 8.5 / L₁(43 – 4)
17×10¯⁶ = 8.5 / L₁(39)
17×10¯⁶ = 8.5 / 39L₁
Cross multiply
17×10¯⁶ × 39L₁ = 8.5
6.63×10¯⁴ L₁ = 8.5
Divide both side by 6.63×10¯⁴
L₁ = 8.5 / 6.63×10¯⁴
L₁ = 12820.51 cm
Finally, we shall convert 12820.51 cm to metre (m). This can be obtained as follow:
100 cm = 1 m
Therefore,
12820.51 cm = 12820.51 cm × 1 m / 100 cm
12820.51 cm = 128.21 m
Thus, the original length of the wire is 128.21 m
The answer is D. 32 m.
The simple equation that connects speed (v), time (t), and distance (d) can be expressed as:

⇒

It is given:

t = 10 s
d = ?
So:
A. Fnet=ma
6*2=12N of force acting on the object in the direction it is accelerating
B. Fnet=ma
4*2=8N of force action on the object in the direction it is accelerating