I am sure, the answer is variant B.
Explanation:
Quite a number of properties varies across a period. Some remains constant whereas others decreases.
As one moves from left to right;
- The energy level remains the same.
- The ionization energy increases progressively as a result of increasing nuclear charge.
- Electron affinity increases from left to right.
- Electronegativity increases.
- Electropositivity decreases.
learn more:
Periodic table brainly.com/question/2014634
#learnwithBrainly
If more acetic acid were added to a solution at equilibrium, [H⁺] and [CH₃CO₂⁻] would increase to counteract the perturbation. (Option C)
<h3>How do systems at equilibrium respond to perturbation?</h3>
When a system at equilibrium suffers a perturbation, it shifts its equilibrium position to counteract such perturbation.
Let's consider a solution of acetic acid at equilibrium.
CH₃CO₂H(aq) = CH₃CO₂⁻(aq) + H⁺(aq)
If more acetic acid were added to the solution, the system will shift toward the products to counteract such an increase.
How would the system change if more acetic acid were added to the solution?
A. [H⁺] would decrease and [CH₃CO₂⁻] would increase. NO.
B. [H⁺] and [CH₃CO₂⁻] would decrease. NO.
C. [H⁺] and [CH₃CO₂⁻] would increase. YES. Both products would increase.
D. [H⁺] would increase and [CH₃CO₂⁻] would decrease. NO.
If more acetic acid were added to a solution at equilibrium, [H⁺] and [CH₃CO₂⁻] would increase to counteract the perturbation.
Learn more about equilibrium here: brainly.com/question/2943338
#SPJ1