Answer:
37S
Explanation:
Radioactivity is the spontaneous emission of particles and / or electromagnetic radiation by unstable atomic nuclei leading to their disintegration.
We have two main types of radioactivity: radioactive decay and artificial transmutation.
In radioactive decay ( natural radioactivity ), a naturally occurring radioactive element like Uranium-238 disintegrates or decays into more stable isotopes with the emission of particles and/or radiation.
23892U = 23490Th + 42He
Artificial transmutation is the collision of two particles where one particle captures the other used to bombard it. There is subsequent production of isotopes similar or different from the bombarded particle. Neutrons, alpha particles ( helium nucleus ), electrons, protons can be used to bombard elements.
147N + 42He = 178O + 11P
For the above question which is artificial transmutation, the reaction equation is
4018Ar + 10n = 3716S + 42He
So, the neutron capture by Argon-40 will produce a radioisotope Sulphur-37 with the emission of an alpha particle.
<h2>
Answer:</h2>
390 g KNO₃
<h2>
General Formulas and Concepts:</h2><h3><u>Chemistry</u></h3>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3><u>Math</u></h3>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h2>
Explanation:</h2>
<u>Step 1: Define</u>
2.3 × 10²⁴ formula units KNO₃
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
Molar Mass of N - 14.01 g/mol
Molar Mass of O - 16.00 g.mol
Molar Mass of KNO₃ - 39.10 + 14.01 + 3(16.00) = 101.11 g/mol
<u>Step 3: Convert</u>
<u />
= 386.172 g KNO₃
<u>Step 4: Check</u>
<em>We are given 2 sig figs. Follow sig fig rules and round.</em>
386.172 g KNO₃ ≈ 390 g KNO₃
Answer:
First, place no. 5 in front of the CO2 in order to balance the carbon atoms. Next, place no. 6 in front of H2O to balance the hydrogen atoms. Lastly place no. 8 in front of the O2 so that there are 16 oxygen atoms on both sides of the reaction.
I’m pretty sure it would be B
Answer:
181.82 g/cm3
Explanation:
density is mass / volume so it is 500 / 2.75=181.82 g/cm3