I'm pretty sure the energy an object acquires when exposed to a force is known was potential energy.
Answer:
82.1 km
Explanation:
We need to resolve each displacement along two perpendicular directions: the east-west direction (let's label it with x) and the north-south direction (y). Resolving each vector:

Vector B is 48 km south, so:

Finally, vector C:

Now we add the components along each direction:

So, the resultant (which is the distance in a straight line between the starting point and the final point of the motion) is

Answer:
gₓ = 23.1 m/s²
Explanation:
The weight of an object is on the surface of earth is given by the following formula:

where,
W = Weight of the object on surface of earth
m = mass of object
g = acceleration due to gravity on the surface of earth = strength of gravity on the surface of earth
Similarly, the weight of the object on Jupiter will be given as:

where,
Wₓ = Weight of the object on surface of Jupiter = 34.665 N
m = mass of object = 1.5 kg
gₓ = acceleration due to gravity on the surface of Jupiter = strength of gravity on the surface of Jupiter = ?
Therefore,


<u>gₓ = 23.1 m/s²</u>