The force needed to accelerate an elevator upward at a rate of
is 2000 N or 2 kN.
<u>Explanation:
</u>
As per Newton's second law of motion, an object's acceleration is directly proportional to the external unbalanced force acting on it and inversely proportional to the mass of the object.
As the object given here is an elevator with mass 1000 kg and the acceleration is given as
, the force needed to accelerate it can be obtained by taking the product of mass and acceleration.


So 2000 N or 2 kN amount of force is needed to accelerate the elevator upward at a rate of
.
Answer:
<h3>
<em>2</em><em>4</em><em>7</em><em>9</em><em> </em><em>Newton</em></h3>
<em>Sol</em><em>ution</em><em>,</em>
<em>Mass</em><em>=</em><em>1</em><em>0</em><em>0</em><em> </em><em>kg</em>
<em>Accele</em><em>ration</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>gravity</em><em>(</em><em>g</em><em>)</em><em>=</em><em>2</em><em>4</em><em>.</em><em>7</em><em>9</em><em> </em><em>m</em><em>/</em><em>s^</em><em>2</em>
<em>Now</em><em>,</em><em>.</em>
<em>
</em>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>
Answer:
the length of the simple pendulum is 0.25 m.
Explanation:
Given;
mass of the air-track glider, m = 0.25 kg
spring constant, k = 9.75 N/m
let the length of the simple pendulum = L
let the frequency of the air-track glider which is equal to frequency of simple pendulum = F
The oscillation frequency of air-track glider is calculated as;

The frequency of the simple pendulum is given as;

Thus, the length of the simple pendulum is 0.25 m.