Answer:
10
Explanation:
i = 5/.5 = 10 Amps. Hope this helps :)
Answer:
Explanation:
By multiplying the rotational frequency with the circumference we can determine the average speed of the object. The circular velocity formula is expressed as, vc = 2 πr / T. Where in, r denotes the radius of the circular orbit. T is time period.
Answer:
The magnitude of the acceleration of the elevator is 0.422 m/s²
Explanation:
Lets explain how to solve the problem
Due to Newton's Law ∑ Forces in direction of motion is equal to mass
multiplied by the acceleration
We have here two forces 460 N in direction of motion and the weight
of the person in opposite direction of motion
The weight of the person is his mass multiplied by the acceleration of
gravity
→ W = mg , where m is the mass and g is the acceleration of gravity
→ m = 45 kg and g = 9.8 m/s²
Substitute these values in the rule above
→ W = 45 × 9.8 = 441 N
The scale reads 460 N
→ F = 460 N , W = 441 N , m = 45 kg
→ F - W = ma
→ 460 - 441 = 45 a
→ 19 = 45 a
Divide both sides by 45
→ a = 0.422 m/s²
<em>The magnitude of the acceleration of the elevator is 0.422 m/s²</em>
Answer:
v= 4055.08m/s
Explanation:
This is a problem that must be addressed through the laws of classical mechanics that concern Potential Gravitational Energy.
We know for definition that,

We must find the highest point and the lowest point to identify the change in energy, so
Point a)
The problem tells us that an object is dropped at a distance of h = 1.15134R over the earth.
That is to say that the energy of that object is equal to,


Point B )
We now use the average radius distance from the earth.


Then,


By the law of conservation of energy we know that,

clearing v,



Therefore the speed of the object when it strikes the Earth’s surface is 4055.08m/s
Voltage is given by the formula
V = IR (Ohms law)
where V is the Voltage
I is the current
and R is the Resistance
Here it is given that the current is I=11
Resistance is R =12
so plugging this in the formula
V = IR
V= 11 * 12
V= 132 Volts
So the Voltage for the given dryer is 132 Volts