Answer:
I) You walk barefoot on the hot street and it burns your toes.
II) When you get into a car with hot black leather in the middle of the summer and your skin starts to get burned.
Explanation:
In conduction mode of heat transfer we know that the energy is transferred from one system to other system due to direct contact of two bodies
Here due to this direct contact the energy is transferred via a given solid or liquid medium
In this type of heat transfer medium particles will remain in its own position only the energy is transferred.
So here we can say the correct answer will be
I) You walk barefoot on the hot street and it burns your toes.
II) When you get into a car with hot black leather in the middle of the summer and your skin starts to get burned.
Answer:



Explanation:
<u>Simple Pendulum</u>
It's a simple device constructed with a mass (bob) tied to the end of an inextensible rope of length L and let swing back and forth at small angles. The movement is referred to as Simple Harmonic Motion (SHM).
(a) The angular frequency of the motion is computed as

We have the length of the pendulum is L=0.81 meters, then we have


(b) The total mechanical energy is computed as the sum of the kinetic energy K and the potential energy U. At its highest point, the kinetic energy is zero, so the mechanical energy is pure potential energy, which is computed as

where h is measured to the reference level (the lowest point). Please check the figure below, to see the desired height is denoted as Y. We know that

And

Solving for Y



The potential energy is


The mechanical energy is, then


(c) The maximum speed is achieved when it passes through the lowest point (the reference for h=0), so the mechanical energy becomes all kinetic energy (K). We know

Equating to the mechanical energy of the system (M)

Solving for v


Answer:
HOPE THIS ANSWER WILL HELP YOU
Answer:
False
Explanation:
When the location of the poles changes in the z-plane, the natural or resonant frequency (ω₀) changes which in turn changes the damped frequency (ωd) of the system.
As the poles of a 2nd-order discrete-time system moves away from the origin then natural frequency (ω₀) increases, which in turn increases damped oscillation frequency (ωd) of the system.
ωd = ω₀√(1 - ζ)
Where ζ is called damping ratio.
For small value of ζ
ωd ≈ ω₀
A related type of beta decay actually decreases the atomic number of the nucleus when a proton becomes a neutron. Due to charge conservation, this type of beta decay involves the release of a charged particle called a “positron” that looks and acts like an electron but has a positive charge.