Answer:
Intermolecular forces are the forces of attraction or repulsion which act between neighboring particles (atoms, molecules, or ions ). These forces are weak compared to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Importance:
Intermolecular forces are important because they determine the physical properties of substances. Many of the life-sustaining properties of water such as its high heat capacity are a result of the hydrogen bonding capabilities it has and are thus due to intermolecular forces.
The alkali metals are so reactive that they are never found in nature in elemental form. Although some of their ores are abundant, isolating them from their ores is somewhat difficult. For these reasons, the group 1 elements were unknown until the early 19th century, when Sir Humphry Davy first prepared sodium (Na) and potassium (K) by passing an electric current through molten alkalis. (The ashes produced by the combustion of wood are largely composed of potassium and sodium carbonate.) Lithium (Li) was discovered 10 years later when the Swedish chemist Johan Arfwedson was studying the composition of a new Brazilian mineral. Cesium (Cs) and rubidium (Rb) were not discovered until the 1860s, when Robert Bunsen conducted a systematic search for new elements. Known to chemistry students as the inventor of the Bunsen burner, Bunsen’s spectroscopic studies of ores showed sky blue and deep red emission lines that he attributed to two new elements, Cs and Rb, respectively. Francium (Fr) is found in only trace amounts in nature, so our knowledge of its chemistry is limited. All the isotopes of Fr have very short half-lives, in contrast to the other elements in group 1.
Answer:
The International Date Line passes through the mid-Pacific Ocean and roughly follows a 180 degrees longitude north-south
line on the Earth. It is located halfway round the world from the prime meridian—the zero degrees longitude established in Greenwich
Answer:
35.578g or 36g if you round
Explanation:
Q=mc ∆∅ where ∅ is temperature difference
1160= m x 1.716 x (42-23)
m = 1160/ 1.716 x19
m=35.578g
m = 36g to nearest whole number
Answer:
Hydrogen is the most explosive element