144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4
Answer:
its either all animals or only mammals. the thing with all animals is that they do have life cycles but not the same as like say humans or elephants, some are complicated.
Answer:
Because it has a quickly sedative effect and it has antimicrobial effect.
Explanation:
This gas is useful because is used to trait pain, reduce anxiety and promote relaxation, slow down the body reaction, so the dentist can use it to calm down the patients.
If the patient present some injuries, this gas can help in wound healing.
Answer:
0.0184
Explanation:
Let's consider the following reaction at equilibrium.
2 HI(g) ⇌ H₂(g) + I₂(g)
The concentration equilibrium constant (Kc) is equal to the product of the concentration of the products raised to their stoichiometric coefficients divided by the product of the concentration of the reactants raised to their stoichiometric coefficients.
Kc = [H₂] × [I₂] / [HI]²
Kc = (4.78 × 10⁻⁴) × (4.78 × 10⁻⁴) / (3.52 × 10⁻³)²
Kc = 0.0184