Explanation:
time taken fir 50 oscillations is 6 seconds
time taken for 1 oscillation is 6/50
convert it into a decimal
Imagine living off nothing but coal and water and still having enough energy to run at over 100 mph! That's exactly what a steam locomotive can do. Although these giant mechanical dinosaurs are now extinct from most of the world's railroads, steam technology lives on in people's hearts and locomotives like this still run as tourist attractions on many heritage railways.
Steam locomotives were powered by steam engines, and deserve to be remembered because they swept the world through the Industrial Revolution of the 18th and 19th centuries. Steam engines rank with cars, airplanes, telephones, radio, and television among the greatest inventions of all time. They are marvels of machinery and excellent examples of engineering, but under all that smoke and steam, how exactly do they work?
B
add them all by direction
13 East
10 West
subtract difference
3 E
The correct options are:
D
"Radio waves have a lower frequency, which makes them safer for humans."
B
"Radio waves take less energy to produce."
<h3>
Why do we radio waves over other electromagnetic waves to transmit information to Earth? </h3>
Radio waves are electromagnetic waves with frequencies on the range from 10 KHz to 10 THz.
Now, remember that all electromagnetic waves have the same speed, which is the speed of light, and the energy of a wave is proportional to its frequency.
Particularly, we can see that radio waves have small frequencies (smaller than infrared light) so these waves carry very little energy.
With that in mind, the correct options are.
D
"Radio waves have a lower frequency, which makes them safer for humans."
B
"Radio waves take less energy to produce."
These are the two main reasons of why we use radio waves.
If you want to learn more about electromagnetic waves.
brainly.com/question/14015797
#SPJ1
Answer:
Here is my answer...
Explanation:
The cart will connect with the opposite force, and then the cart will come to a shuddering stop before moving in the direction of the oposite force.
Hope I helped! :)