<span>it takes about about 37,200 years for light to travel 1 light year. So the answer would have to be false. It would take way longer than 300k years
</span>
Answer:
θ = sin⁻¹
Explanation:
From one of the equations of motion, v² = u² + 2as.......... equation 1
Since the object thrown was moving against gravity, then the acceleration, a would change to -g and the initial velocity u would change to V₀ sin θ because the object is travelling at angle of θ to the horizontal. By inputting all these parameter into equation 1, we would arrive at:
v² = (u sin θ)² - 2gd
(u sin θ)² = 2gd
d = (u sin θ)²/2g
sin² θ = 2gd
sin θ = 
θ = sin⁻¹ 
Explanation:
The frequency of radio waves is 1.667 GHz
One portion of the same wave front travels 1.260 mm farther than the other before the two signals are combined.
There are two conditions for interference either constructive or destructive.
For constructive interference , the path difference is n times of wavelength and for destructive interference, the path difference is (n+1/2) times of wavelength
We can find wavelength in this case as follows :

If we divide path difference by wavelength,

It means that the path difference is 7 times of the wavelength. it means the two waves combine constructively and the value of m for the path difference between the two signals is 7.
Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.
B. Newton's First Law, I'm pretty sure. The first states that an object in motion stays in motion, and an object at rest stays at rest until an outside force is applied, and that seems pretty relevant.