1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
3 years ago
15

A wall lizard has adhesive pards in the limbs true or false plz help me​

Physics
1 answer:
Leto [7]3 years ago
5 0
True lizards can stick to surfaces because their bulbous toes are covered in hundreds of tiny microscopic hairs called setae
You might be interested in
What is an electric load ?write with example​
Ganezh [65]

Explanation:

an electrical load is the part of an electrical circuit in which current is transformed into something useful. examples include a lightbulb, a resistor and a motor. a load converts electricity into heat, light or motion. put another way, the part of a circuit that connects to a well-defined output terminal is considered an electrical load.

4 0
3 years ago
Two objects carry initial charges that are q1 and q2, respectively, where |q2| > |q1|. They are located 0.160 m apart and beh
mart [117]

Answer:

\rm |q_1|=8.0\times 10^{-7}\ C,\ \ \ |q_2| = 4.6\times 10^{-6}\ C.

Explanation:

According to the Coulomb's law, the magnitude of the electrostatic force between two static point charges  \rm q_1 and \rm q_1, separated by a distance \rm r, is given by

\rm F = \dfrac{kq_1q_2}{r^2}.

where k is the Coulomb's constant.

Initially,

\rm r = 0.160\ m\\F_i = -1.30\ N.\\\\and \ \ |q_2|>|q_1|.

The negative sign is taken with force F because the force is attractive.

Therefore, the initial electrostatic force between the charges is given by

\rm F_i = \dfrac{kq_1q_2}{r^2}.\\-1.30=\dfrac{kq_1q_2}{0.160^2}\\\rm\Rightarrow q_2 = \dfrac{-1.30\times 0.160^2}{q_1k}\ \ \ ..............\ (1).

Now, the objects are then brought into contact, so the net charge is shared equally, and then they are returned to their initial positions.

The force is now repulsive, therefore, \rm F_f = +1.30\ N.

The new charges on the two objects are

\rm q_1'=q_2' = \dfrac{q_1+q_2}{2}.

The new force is given by

\rm F_f = \dfrac{kq_1'q_2'}{r^2}\\+1.30=\dfrac{k\left (\dfrac{q_1+q_2}{2}\right )\left (\dfrac{q_1+q_2}{2}\right )}{0.160^2}\\\Rightarrow \left (\dfrac{q_1+q_2}{2}\right )^2=\dfrac{+1.30\times 0.160^2}{k}\\(q_1+q_2)^2=\dfrac{4\times 1.30\times 0.160^2}{k}\\q_1^2+q_2^2+2q_1q_2=\dfrac{4\times 1.30\times 0.160^2}{k}\\\\

Using (1),

\rm q_1^2+\left ( \dfrac{-1.30\times 0.160^2}{q_1k}\right )^2+2\left (\dfrac{-1.30\times 0.160^2}{k} \right )=\dfrac{4\times 1.30\times 0.160^2}{k}\\q_1^2+\dfrac 1{q_1^2}\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0\\q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0

\rm q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0\\q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{9\times 10^9}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{9\times 10^9} \right )=0\\q_1^4-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{9\times 10^9} \right )+\left ( \dfrac{-1.30\times 0.160^2}{9\times 10^9}\right )^2=0

\rm q_1^4-q_1^2\left (2.22\times 10^{-11} \right )+\left ( 1.37\times 10^{-23}\right ) =0\\\Rightarrow q_1^2 = \dfrac{-(-2.22\times 10^{-11})\pm \sqrt{(-2.22\times 10^{-11})^2-4\cdot (1)\cdot (1.37\times 10^{-23})}}{2}\\=1.11\times 10^{-11}\pm 1.046\times 10^{-11}.\\=6.4\times 10^{-13}\ \ \ or\ \ \ 2.156\times 10^{-11}\\\Rightarrow q_1 = \pm 8.00\times 10^{-7}\ C\ \ \ or\ \ \ \pm 4.64\times 10^{-6}\ C.

Using (1),

When \rm q_1 = \pm 8.00\times 10^{-7}\ C,

\rm q_2=\dfrac{-1.30\times 0.160^2}{\pm 8.00\times 10^{-7}\times 9\times 10^9}=\mp4.6\times 10^{-6}\ C.

When \rm q_1=\pm 4.6\times 10^{-6}\ C,

\rm q_2=\dfrac{-1.30\times 0.160^2}{\pm 4.64\times 10^{-6}\times 9\times 10^9}=\mp7.97\times 10^{-7}\ C\approx 8.0\times 10^{-7}\ C.

Since, \rm |q_2|>|q_1|

Therefore, \rm |q_1|=8.0\times 10^{-7}\ C,\ \ \ |q_2| = 4.6\times 10^{-6}\ C.

7 0
3 years ago
Why are movie scenes in outer space often unrealistic?
kifflom [539]

Answer:

see explanation

Explanation:

by my calculations, i believe it may be because they have to pretend to be in space.

8 0
2 years ago
Read 2 more answers
Which action is due to field forces?
Stella [2.4K]

Answer:

a

an apple falling from a tree

8 0
3 years ago
What is potential energy​
JulsSmile [24]

Answer:

An Energy held by an object because of its position relative by other objects

Explanation:

6 0
3 years ago
Other questions:
  • A car accelerates horizontally from rest on a level road at a constant acceleration of Down the road, it passes through two phot
    12·2 answers
  • A yo-yo is made of two solid cylindrical disks, each of mass 0.055 kg and diameter 0.070 m , joined by a (concentric) thin solid
    9·2 answers
  • Which of the following are early clues that signal an earthquake may occur? Select all that apply. Changes in magnetic propertie
    15·2 answers
  • If the light wave has a wavelength of 10m what would be its velocity
    12·2 answers
  • Which most accurately describes the path that sound​ travels??
    6·1 answer
  • An object undergoing simple harmonic motion takes 0.40 s to travel from one point of zero velocity to the next such point. The d
    14·1 answer
  • Packages having a mass of 6 kgkg slide down a smooth chute and land horizontally with a speed of 3 m/sm/s on the surface of a co
    13·1 answer
  • A 7 kg ball is moving at a constant speed of 5 m/s. A force of 300 N is applied to the ball for 4 s. The new speed of the ball i
    7·1 answer
  • 3. Work out the mass if an object is accelerated at <br> 10 m/s2 and has a weight of 98N.
    10·1 answer
  • The amount of energy lost at the transition between each trophic level of the pyramid of energy is about _______. a. 10% b. 50%
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!